Search results for: solar irradiation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5539

Search results for: solar irradiation modeling

5539 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 429
5538 Numerical Simulation of Solar Reactor for Water Disinfection

Authors: A. Sebti Bouzid, S. Igoud, L. Aoudjit, H. Lebik

Abstract:

Mathematical modeling and numerical simulation have emerged over the past two decades as one of the key tools for design and optimize performances of physical and chemical processes intended to water disinfection. Water photolysis is an efficient and economical technique to reduce bacterial contamination. It exploits the germicidal effect of solar ultraviolet irradiation to inactivate pathogenic microorganisms. The design of photo-reactor operating in continuous disinfection system, required tacking in account the hydrodynamic behavior of water in the reactor. Since the kinetic of disinfection depends on irradiation intensity distribution, coupling the hydrodynamic and solar radiation distribution is of crucial importance. In this work we propose a numerical simulation study for hydrodynamic and solar irradiation distribution in a tubular photo-reactor. We have used the Computational Fluid Dynamic code Fluent under the assumption of three-dimensional incompressible flow in unsteady turbulent regimes. The results of simulation concerned radiation, temperature and velocity fields are discussed and the effect of inclination angle of reactor relative to the horizontal is investigated.

Keywords: solar water disinfection, hydrodynamic modeling, solar irradiation modeling, CFD Fluent

Procedia PDF Downloads 313
5537 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 324
5536 Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell

Authors: Mazouz Halima, Belghachi Abdrahmane

Abstract:

Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure.

Keywords: InP solar cell, p/n and n/p structure, electron irradiation, output parameters

Procedia PDF Downloads 516
5535 Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature

Authors: R. Nasrin, M. Ferdows

Abstract:

Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level.

Keywords: PV module, solar radiation, efficiency, cell temperature

Procedia PDF Downloads 330
5534 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 346
5533 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 46
5532 Water Irrigation in the Chlef Region Using Photovoltaic Solar Energy

Authors: T. Tahri, H. Zahloul, K. E. Meddah, H. Lazergue

Abstract:

This paper presents a theoretical study that leads to the design of a photovoltaic pumping system to irrigate six hectares of oranges in the valley of Chlef using the software "PVSYST". It was shown that the site of Chlef presents a favorable climate to this type of energy with an irradiation of over 5 kWh/m2/day, and significant resources underground water. Another very important coincidence still promotes the use of this type of energy for pumping water in Chlef is that the demand for water, especially in agriculture, peaked in hot and dry where it is precisely when one has access to the maximum of solar energy.

Keywords: solar energy, irradiation, water pumping, design, Valley of Chlef

Procedia PDF Downloads 228
5531 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region

Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan

Abstract:

Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.

Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.

Procedia PDF Downloads 349
5530 Numerical Study of UV Irradiation Effect on Air Disinfection Systems

Authors: H. Shokouhmand, M. Degheh, B. Sajadi, H. Sobhani

Abstract:

The induct ultraviolet germicidal irradiation (UVGI) systems are broadly used nowadays and their utilization is widened every day. Even though these systems are not applicable individually, they are very suitable supplements for the traditional filtration systems. The amount of inactivated microorganisms is dependent on the air velocity, lamp power, fluence rate distribution, and also germicidal susceptibility of microorganisms. In this paper, these factors are investigated utilizing an air-microorganism two-phase numerical model. The eulerian-lagrangian method was used to have more detailed information on the history of each particle. The UVGI system was modeled in three steps including: 1) modeling the air flow, 2) modeling the discrete phase of particles, 3) modeling the UV intensity field, and 4) modeling the particle inactivation. The results from modeling different lamp arrangements and powers showed that the system functions better at more homogeneous irradiation distribution. Since increasing the air flow rate of the device results in increasing of particle inactivation rate, the optimal air velocity shall be adjusted in accordance with the microorganism production rate, and the air quality requirement using the curves represented in this paper.

Keywords: CFD, microorganism, two-phase flow, ultraviolet germicidal irradiation

Procedia PDF Downloads 287
5529 Modeling and Simulation of InAs/GaAs and GaSb/GaAS Quantum Dot Solar Cells in SILVACO TCAD

Authors: Fethi Benyettou, Abdelkader Aissat, M. A. Benammar

Abstract:

In this work, we use Silvaco TCAD software for modeling and simulations of standard GaAs solar cell, InAs/GaAs and GaSb/GaAs p-i-n quantum dot solar cell. When comparing 20-layer InAs/GaAs, GaSb/GaAs quantum dots solar cells with standard GaAs solar cell, the conversion efficiency in simulation results increased from 16.48 % to 22.6% and 16.48% to 22.42% respectively. Also, the absorption range edge of photons with low energies extended from 900 nm to 1200 nm.

Keywords: SILVACO TCAD, the quantum dot, simulation, materials engineering

Procedia PDF Downloads 449
5528 Modeling of Reverse Osmosis Water Desalination Powered by Photovoltaic Solar Energy

Authors: Salma El Aimani

Abstract:

Freshwater is an essential material in our daily life; its availability is on the decline due to population growth and climate change. To meet the demand for fresh water in regions where reserves are insufficient, several countries have adopted seawater desalination. Several physical methods allow the production of fresh water from seawater; among these methods are distillation and reverse osmosis, and there is great potential to use renewable energy sources such as solar Photovoltaics. The work presented in this paper consists of three parts. First, the generalities of desalination technologies will be presented. The second part is devoted to the presentation of different water desalination systems combined with renewable energy and their benefits and drawbacks on different sides. In the third part, we will perform a modeling of a PV water desalination system under Matlab Simulink software. Then, according to the obtained simulation results, we conclude this paper with the prospects of the presented work.

Keywords: reverse-osmosis, desalination, modelling, ‎irradiation, Matlab

Procedia PDF Downloads 48
5527 Assessment of the Photovoltaic and Solar Thermal Potential Installation Area on Residential Buildings: Case Study of Amman, Jordan

Authors: Jenan Abu Qadourah

Abstract:

The suitable surface areas for the ST and PV installation are determined based on incident solar irradiation on different surfaces, shading analysis and suitable architectural area for integration considering limitations due to the constructions, available surfaces area and use of the available surfaces for other purposes. The incident solar radiation on the building surfaces and the building solar exposure analysis of the location of Amman, Jordan, is performed with Autodesk Ecotect analysis 2011 simulation software. The building model geometry within the typical urban context is created in “SketchUp,” which is then imported into Ecotect. The hourly climatic data of Amman, Jordan selected are the same ones used for the building simulation in IDA ICE and Polysun simulation software.

Keywords: photovoltaic, solar thermal, solar incident, simulation, building façade, solar potential

Procedia PDF Downloads 104
5526 Modeling of a Concentrating Photovoltaic Module with and without Cooling System

Authors: Intissar Benrhouma, Marta Victoria, Ignacio Anton, Bechir Chaouachi

Abstract:

Concentrating photovoltaic systems CPV use optical elements, such as Fresnel lenses, to concentrate solar intensity. The concentrated solar energy is delivered to the solar cell from 20 to 100 W/cm². Some of this energy is converted to electricity, while the rest must be disposed of as a residual heat. Solar cells cooling should be a necessary part of CPV modeling because these systems allowed increasing the power received by the cell. This high power can rise the electrons’ potential causing the heating of the cell, which reduces the global module’s efficiency. This work consists of modeling a concentrating photovoltaic module with and without a cooling system. We have established a theoretical model based on energy balances carried out on a photovoltaic module using solar radiation concentration cells. Subsequently, we developed a calculation program on Matlab which allowed us to simulate the functioning of this module. The obtained results show that the addition of a cooling system to the module improves greatly the performance of our CPV system.

Keywords: solar energy, photovoltaic, concentration, cooling, performance improvement

Procedia PDF Downloads 371
5525 Artificial Intelligence Based Predictive Models for Short Term Global Horizontal Irradiation Prediction

Authors: Kudzanayi Chiteka, Wellington Makondo

Abstract:

The whole world is on the drive to go green owing to the negative effects of burning fossil fuels. Therefore, there is immediate need to identify and utilise alternative renewable energy sources. Among these energy sources solar energy is one of the most dominant in Zimbabwe. Solar power plants used to generate electricity are entirely dependent on solar radiation. For planning purposes, solar radiation values should be known in advance to make necessary arrangements to minimise the negative effects of the absence of solar radiation due to cloud cover and other naturally occurring phenomena. This research focused on the prediction of Global Horizontal Irradiation values for the sixth day given values for the past five days. Artificial intelligence techniques were used in this research. Three models were developed based on Support Vector Machines, Radial Basis Function, and Feed Forward Back-Propagation Artificial neural network. Results revealed that Support Vector Machines gives the best results compared to the other two with a mean absolute percentage error (MAPE) of 2%, Mean Absolute Error (MAE) of 0.05kWh/m²/day root mean square (RMS) error of 0.15kWh/m²/day and a coefficient of determination of 0.990. The other predictive models had prediction accuracies of MAPEs of 4.5% and 6% respectively for Radial Basis Function and Feed Forward Back-propagation Artificial neural network. These two models also had coefficients of determination of 0.975 and 0.970 respectively. It was found that prediction of GHI values for the future days is possible using artificial intelligence-based predictive models.

Keywords: solar energy, global horizontal irradiation, artificial intelligence, predictive models

Procedia PDF Downloads 243
5524 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 327
5523 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: energy storage, power distribution system, solar generator, voltage level

Procedia PDF Downloads 96
5522 FSO Performance under High Solar Irradiation: Case Study Qatar

Authors: Syed Jawad Hussain, Abir Touati, Farid Touati

Abstract:

Free-Space Optics (FSO) is a wireless technology that enables the optical transmission of data though the air. FSO is emerging as a promising alternative or complementary technology to fiber optic and wireless radio-frequency (RF) links due to its high-bandwidth, robustness to EMI, and operation in unregulated spectrum. These systems are envisioned to be an essential part of future generation heterogeneous communication networks. Despite the vibrant advantages of FSO technology and the variety of its applications, its widespread adoption has been hampered by rather disappointing link reliability for long-range links due to atmospheric turbulence-induced fading and sensitivity to detrimental climate conditions. Qatar, with modest cloud coverage, high concentrations of airborne dust and high relative humidity particularly lies in virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2 and 80-90% clear skies throughout the year. The specific objective of this work is to study for the first time in Qatar the effect of solar irradiation on the deliverability of the FSO Link. In order to analyze the transport media, we have ported Embedded Linux kernel on Field Programmable Gate Array (FPGA) and designed a network sniffer application that can run into FPGA. We installed new FSO terminals and configure and align them successively. In the reporting period, we carry out measurement and relate them to weather conditions.

Keywords: free space optics, solar irradiation, field programmable gate array, FSO outage

Procedia PDF Downloads 327
5521 Power Control in Solar Battery Charging Station Using Fuzzy Decision Support System

Authors: Krishnan Manickavasagam, Manikandan Shanmugam

Abstract:

Clean and abundant renewable energy sources (RES) such as solar energy is seen as the best solution to replace conventional energy source. Unpredictable power generation is a major issue in the penetration of solar energy, as power generated is governed by the irradiance received. Controlling the power generated from solar PV (SPV) panels to battery and load is a challenging task. In this paper, power flow control from SPV to load and energy storage device (ESD) is controlled by a fuzzy decision support system (FDSS) on the availability of solar irradiation. The results show that FDSS implemented with the energy management system (EMS) is capable of managing power within the area, and if excess power is available, then shared with the neighboring area.

Keywords: renewable energy sources, fuzzy decision support system, solar photovoltaic, energy storage device, energy management system

Procedia PDF Downloads 68
5520 Solar Energy Generation Based Urban Development: A Case of Jodhpur City

Authors: A. Kumar, V. Devadas

Abstract:

India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.

Keywords: city, consumption, energy, generation

Procedia PDF Downloads 97
5519 Effect of Ti+ Irradiation on the Photoluminescence of TiO2 Nanofibers

Authors: L. Chetibi, D. Hamana, T. O. Busko, M. P. Kulish, S. Achour

Abstract:

TiO2 nanostructures have attracted much attention due to their optical, dielectric and photocatalytic properties as well as applications including optical coating, photocatalysis and photoelectrochemical solar cells. This work aims to prepare TiO2 nanofibers (NFs) on titanium substrate (Ti) by in situ oxidation of Ti foils in a mixture solution of concentrated H2O2 and NaOH followed by proton exchange and calcinations. Scanning Electron microscopy (SEM) revealed an obvious network of TiO2 nanofibers. The photoluminescence (PL) spectra of these nanostructures revealed a broad intense band in the visible light range with a reduced near edge band emission. The PL bands in the visible region, mainly, results from surface oxygen vacancies and others defects. After irradiation with Ti+ ions (the irradiation energy was E = 140 keV with doses of 1013 ions/cm2), the intensity of the PL spectrum decreased as a consequence of the radiation treatment. The irradiation with Ti+ leads to a reduction of defects and generation of non irradiative defects near to the level of the conduction band as evidenced by the PL results. On the other hand, reducing the surface defects on TiO2 nanostructures may improve photocatalytic and optoelectronic properties of this nanostructure.

Keywords: TiO2, nanofibers, photoluminescence, irradiation

Procedia PDF Downloads 216
5518 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D

Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui

Abstract:

During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.

Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D

Procedia PDF Downloads 471
5517 Modeling and Analysis of Solar Assisted Adsorption Cooling System Using TRNSYS

Authors: M. Wajahat, M. Shoaib, A. Waheed

Abstract:

As a result of increase in world energy demand as well as the demand for heating, refrigeration and air conditioning, energy engineers are now more inclined towards the renewable energy especially solar based thermal driven refrigeration and air conditioning systems. This research is emphasized on solar assisted adsorption refrigeration system to provide comfort conditions for a building in Islamabad. The adsorption chiller can be driven by low grade heat at low temperature range (50 -80 °C) which is lower than that required for generator in absorption refrigeration system which may be furnished with the help of common flat plate solar collectors (FPC). The aim is to offset the total energy required for building’s heating and cooling demand by using FPC’s thus reducing dependency on primary energy source hence saving energy. TRNSYS is a dynamic modeling and simulation tool which can be utilized to simulate the working of a complete solar based adsorption chiller to meet the desired cooling and heating demand during summer and winter seasons, respectively. Modeling and detailed parametric analysis of the whole system is to be carried out to determine the optimal system configuration keeping in view various design constraints. Main focus of the study is on solar thermal loop of the adsorption chiller to reduce the contribution from the auxiliary devices.

Keywords: flat plate collector, energy saving, solar assisted adsorption chiller, TRNSYS

Procedia PDF Downloads 616
5516 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS

Authors: M. Tabatabaee, R. Mohebat, M. Baranian

Abstract:

Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.

Keywords: zinc sulfide, nano articles, photodegradation, solar light

Procedia PDF Downloads 381
5515 Development and Modeling of a Geographic Information System Solar Flux in Adrar, Algeria

Authors: D. Benatiallah, A. Benatiallah, K. Bouchouicha, A. Harouz

Abstract:

The development and operation of renewable energy known an important development in the world with significant growth potential. Estimate the solar radiation on terrestrial geographic locality is of extreme importance, firstly to choose the appropriate site where to place solar systems (solar power plants for electricity generation, for example) and also for the design and performance analysis of any system using solar energy. In addition, solar radiation measurements are limited to a few areas only in Algeria. Thus, we use theoretical approaches to assess the solar radiation on a given location. The Adrar region is one of the most favorable sites for solar energy use with a medium flow that exceeds 7 kWh / m2 / d and saddle of over 3500 hours per year. Our goal in this work focuses on the creation of a data bank for the given data in the energy field of the Adrar region for the period of the year and the month then the integration of these data into a geographic Information System (GIS) to estimate the solar flux on a location on the map.

Keywords: Adrar, flow, GIS, deposit potential

Procedia PDF Downloads 339
5514 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 327
5513 Solar Photocatalytic Degradation of Phenol in Aqueous Solutions Using Titanium Dioxide

Authors: Mohamed Gar Alalm, Ahmed Tawfik

Abstract:

In this study, photo-catalytic degradation of phenol by titanium dioxide (TiO2) in aqueous solution was evaluated. The UV energy of solar light was utilized by compound parabolic collectors (CPCs) technology. The effect of irradiation time, initial pH, and dosage of TiO2 were investigated. Aromatic intermediates (catechol, benzoquinone, and hydroquinone) were quantified during the reaction to study the pathways of the oxidation process. 94.5% degradation efficiency of phenol was achieved after 150 minutes of irradiation when the initial concentration was 100 mg/L. The dosage of TiO2 significantly affected the degradation efficiency of phenol. The observed optimum pH for the reaction was 5.2. Phenol photo-catalytic degradation fitted to the pseudo-first order kinetic according to Langmuir–Hinshelwood model.

Keywords: compound parabolic collectors, phenol, photo-catalytic, titanium dioxide

Procedia PDF Downloads 378
5512 Modeling of Silicon Window Layers for Solar Cells Based SIGE

Authors: Meriem Boukais, B. Dennai, A. Ould- Abbas

Abstract:

The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE).

Keywords: modeling, SiGe, AMPS-1D, quantum efficiency, conversion, efficiency

Procedia PDF Downloads 680
5511 Optimal Design and Simulation of a Grid-Connected Photovoltaic (PV) Power System for an Electrical Department in University of Tripoli, Libya

Authors: Mustafa Al-Refai

Abstract:

This paper presents the optimal design and simulation of a grid-connected Photovoltaic (PV) system to supply electric power to meet the energy demand by Electrical Department in University of Tripoli Libya. Solar radiation is the key factor determining electricity produced by photovoltaic (PV) systems. This paper is designed to develop a novel method to calculate the solar photovoltaic generation capacity on the basis of Mean Global Solar Radiation data available for Tripoli Libya and finally develop a system design of possible plant capacity for the available roof area. MatLab/Simulink Programming tools and monthly average solar radiation data are used for this design and simulation. The specifications of equipments are provided based on the availability of the components in the market. Simulation results and analyses are presented to validate the proposed system configuration.

Keywords: photovoltaic (PV), grid, Simulink, solar energy, power plant, solar irradiation

Procedia PDF Downloads 270
5510 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 322