Search results for: two-dimensional conduction heat transfer analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30620

Search results for: two-dimensional conduction heat transfer analysis

28760 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 297
28759 Using the ISO 9705 Room Corner Test for Smoke Toxicity Quantification of Polyurethane

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Polyurethane (PU) foam is typically sold as acoustic foam that is often used as sound insulation in settings such as night clubs and bars. As a construction product, PU is tested by being glued to the walls and ceiling of the ISO 9705 room corner test room. However, when heat is applied to PU foam, it melts and burns as a pool fire due to it being a thermoplastic. The current test layout is unable to accurately measure mass loss and doesn’t allow for the material to burn as a pool fire without seeping out of the test room floor. The lack of mass loss measurement means gas yields pertaining to smoke toxicity analysis can’t be calculated, which makes data comparisons from any other material or test method difficult. Additionally, the heat release measurements are not representative of the actual measurements taken as a lot of the material seeps through the floor (when a tray to catch the melted material is not used). This research aimed to modify the ISO 9705 test to provide the ability to measure mass loss to allow for better calculation of gas yields and understanding of decomposition. It also aimed to accurately measure smoke toxicity in both the doorway and duct and enable dilution factors to be calculated. Finally, the study aimed to examine if doubling the fuel loading would force under-ventilated flaming. The test layout was modified to be a combination of the SBI (single burning item) test set up inside oof the ISO 9705 test room. Polyurethane was tested in two different ways with the aim of altering the ventilation condition of the tests. Test one was conducted using 1 x SBI test rig aiming for well-ventilated flaming. Test two was conducted using 2 x SBI rigs (facing each other inside the test room) (doubling the fuel loading) aiming for under-ventilated flaming. The two different configurations used were successful in achieving both well-ventilated flaming and under-ventilated flaming, shown by the measured equivalence ratios (measured using a phi meter designed and created for these experiments). The findings show that doubling the fuel loading will successfully force under-ventilated flaming conditions to be achieved. This method can therefore be used when trying to replicate post-flashover conditions in future ISO 9705 room corner tests. The radiative heat generated by the two SBI rigs facing each other facilitated a much higher overall heat release resulting in a more severe fire. The method successfully allowed for accurate measurement of smoke toxicity produced from the PU foam in terms of simple gases such as oxygen depletion, CO and CO2. Overall, the proposed test modifications improve the ability to measure the smoke toxicity of materials in different fire conditions on a large-scale.

Keywords: flammability, ISO9705, large-scale testing, polyurethane, smoke toxicity

Procedia PDF Downloads 60
28758 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall

Authors: Farshid Fathinia

Abstract:

Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.

Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law

Procedia PDF Downloads 335
28757 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review

Authors: Yousuf Nasser Al Khamisi

Abstract:

Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.

Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework

Procedia PDF Downloads 126
28756 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 242
28755 Thermal Performance of Fully Immersed Server into Saturated Fluid Porous Medium

Authors: Yaser Al-Anii, Abdulmajeed Almaneea, Jonathan L. Summers, Harvey M. Thompson, Nikil Kapur

Abstract:

The natural convection cooling system of a fully immersed server in dielectric liquid is studied numerically. In present case study, the dielectric liquid represents working fluid and it is in contact with server inside capsule. The capsule includes electronic component and fluid, which can be modelled as saturated porous media. This medium follow Darcy flow regime and assumed to be in balance between its components. The study focus is on role of spatial parameters on thermal behavior of convective heat transfer. Based on server known unit, which is 1U, two parameters Ly and S are changed to test their effect. Meanwhile, wide range of modified Rayleigh number, which is 0.5 to 300, are covered to better understand thermal performance. Navier-Stokes equations are used to model physical domain. Furthermore, successive over relaxation and time marching techniques are used to solve momentum and energy equation. From obtained correlation, the in-between distance S is more effective on Nusselt number than distance to edge Ly by approximately 14%. In addition, as S increase, the average Nusselt number of the upper unit is increased sharply, whereas the lower one keeps on same level.

Keywords: convective cooling of server, darcy flow, liquid-immersed server, porous media

Procedia PDF Downloads 386
28754 Smart Meter Incorporating UWB Technology

Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran

Abstract:

Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.

Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data

Procedia PDF Downloads 499
28753 A Systematic Analysis of Knowledge Development Trends in Industrial Maintenance Projects

Authors: Lilian Ogechi Iheukwumere-Esotu, Akilu Yunusa-Kaltungo, Paul Chan

Abstract:

Industrial assets are prone to degradation and eventual failures due to repetitive loads and harsh environments in which they operate. These failures often lead to costly downtimes, which may involve loss of critical assets and/or human lives. The rising pressures from stakeholders for optimized systems’ outputs have further placed strains on business organizations. Traditional means of combating such failures are by adopting strategies capable of predicting, controlling, and/or reducing the likelihood of systems’ failures. Turnarounds, shutdowns, and outages (TSOs) projects are popular maintenance management activities conducted over a certain period of time. However, despite the critical and significant cost implications of TSOs, the management of the interface of knowledge between academia and industry to our best knowledge has not been fully explored in comparison to other aspects of industrial operations. This is perhaps one of the reasons for the limited knowledge transfer between academia and industry, which has affected the outcomes of most TSOs. Prior to now, the study of knowledge development trends as a failure analysis tool in the management of TSOs projects have not gained the required level of attention. Hence, this review provides useful references and their implications for future studies in this field. This study aims to harmonize the existing research trends of TSOs through a systematic review of more than 3,000 research articles published over 7 decades (1940- till date) which were extracted using very specific research criteria and later streamlined using nominated inclusion and exclusion parameters. The information obtained from the analysis were then synthesized and coded into 8 parameters, thereby allowing for a transformation into actionable outputs. The study revealed a variety of information, but the most critical findings can be classified into 4 folds: (1) Empirical validation of available conceptual frameworks and models is still a far cry in practice, (2) traditional project management views for managing uncertainties are still dominant, (3) Inconsistent approaches towards the adoption and promotion of knowledge management systems which supports creation, transfer and application of knowledge within and outside the project organization and, (4) exploration of social practices in industrial maintenance project environments are under-represented within the existing body of knowledge. Thus, the intention of this study is to depict the usefulness of a framework which incorporates fact findings emanating from careful analysis and illustrations of evidence based results as a suitable approach which can tackle reoccurring failures in industrial maintenance projects.

Keywords: industrial maintenance, knowledge management, maintenance projects, systematic review, TSOs

Procedia PDF Downloads 106
28752 Study on the Efficiency of Some Antioxidants on Reduction of Maillard Reaction in Low Lactose Milk

Authors: Farnaz Alaeimoghadam, Farzad Alaeimoghadam

Abstract:

In low-lactose milk, due to lactose hydrolysis and its conversion to monosaccharides like glucose and galactose, the Maillard reaction (non-enzymatic browning) occurs more readily compared to non-hydrolyzed milk. This reaction incurs off-flavor and dark color, as well as a decrease in the nutritional value of milk. The target of this research was to evaluate the effect of natural antioxidants in diminishing the browning in low-lactose milk. In this research, three antioxidants, namely ascorbic acid, gallic acid, and pantothenic acid in the concentration range of 0-1 mM/L, either in combination with each other or separately, were added to low-lactose milk. After heat treatment (120 0C for 3 min.), milk samples incubated at 55 0C for one day and then stored at 4 0C for 9 days. Quality indices, including total phenol content, antioxidant activity, color indices, and sensory characters, were measured during intervals of 0, 2, 5, 7, and 9 days. Results of this research showed that the effect of storage time and adding antioxidants were significant on pH, antioxidant activity, total phenolic compounds either before or after heating, index L*, color change, and sensational characteristics (p < 0.05); however, acidity, a* and b* indices, chroma, and hue angle showed no significant changes (p > 0.05). The findings showed that the simultaneous application of gallic acid and ascorbic in the diminishing of non-enzymatic browning and color change, increasing pH, longevity, and antioxidant activity after heat treatment, and augmenting phenolic compounds before heat treatment was better than that of pantothenic acid.

Keywords: Maillard, low-lactose milk, non-enzymatic browning, natural antioxidant

Procedia PDF Downloads 126
28751 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 62
28750 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 60
28749 The Synthesis of AgInS₂/SnS₂/RGO Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin

Authors: Mingmei Zhang, Xinyong Li

Abstract:

Novel AgInS2/SnS2/RGO (AISR) heterojunctions photocatalysts were synthesized by simple hydrothermal method. The morphology and composition of the fabricated AISR nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AISR photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, laser flash photolysis technique was conducted to test the lifetime of charge carriers of the fabricated nanocomposites. The interfacial charges transfer mechanism was also discussed.

Keywords: AISR heterojunctions, electron-hole pairs, SPV spectra, charges transfer mechanism

Procedia PDF Downloads 166
28748 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch

Abstract:

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Keywords: boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones

Procedia PDF Downloads 192
28747 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 269
28746 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 245
28745 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk

Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda

Abstract:

Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.

Keywords: cheese fraud, milk, pasteurisation, TD-NMR

Procedia PDF Downloads 227
28744 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties

Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid

Abstract:

High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.

Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology

Procedia PDF Downloads 296
28743 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 158
28742 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: multi-slotted antenna, microstrip patch antenna, frequency selective surface, artificial magnetic conduction

Procedia PDF Downloads 363
28741 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice

Authors: T. Ewetumo, K. D. Adedayo, Festus Ben

Abstract:

Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.

Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation

Procedia PDF Downloads 334
28740 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation

Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap

Abstract:

The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.

Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance

Procedia PDF Downloads 306
28739 Investigation on the Cooling Performance of Cooling Channels Fabricated via Selective Laser Melting for Injection Molding

Authors: Changyong Liu, Junda Tong, Feng Xu, Ninggui Huang

Abstract:

In the injection molding process, the performance of cooling channels is crucial to the part quality. Through the application of conformal cooling channels fabricated via metal additive manufacturing, part distortion, warpage can be greatly reduced and cycle time can be greatly shortened. However, the properties of additively manufactured conformal cooling channels are quite different from conventional drilling processes such as the poorer dimensional accuracy and larger surface roughness. These features have significant influences on its cooling performance. In this study, test molds with the cooling channel diameters of φ2 mm, φ3 mm and φ4 mm were fabricated via selective laser melting and conventional drilling process respectively. A test system was designed and manufactured to measure the pressure difference between the channel inlet and outlet, the coolant flow rate and the temperature variation during the heating process. It was found that the cooling performance of SLM-fabricated channels was poorer than drilled cooling channels due to the smaller sectional area of cooling channels resulted from the low dimensional accuracy and the unmolten particles adhered to the channel surface. Theoretical models were established to determine the friction factor and heat transfer coefficient of SLM-fabricated cooling channels. These findings may provide guidance to the design of conformal cooling channels.

Keywords: conformal cooling channels, selective laser melting, cooling performance, injection molding

Procedia PDF Downloads 135
28738 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments

Authors: Lun Lou, Jintu Fan

Abstract:

While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.

Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device

Procedia PDF Downloads 62
28737 A Randomized Controlled Intervention Study of the Effect of Music Training on Mathematical and Working Memory Performances

Authors: Ingo Roden, Stefana Lupu, Mara Krone, Jasmin Chantah, Gunter Kreutz, Stephan Bongard, Dietmar Grube

Abstract:

The present experimental study examined the effects of music and math training on mathematical skills and visuospatial working memory capacity in kindergarten children. For this purpose, N = 54 children (mean age: 5.46 years; SD = .29) were randomly assigned to three groups. Children in the music group (n = 18) received weekly sessions of 60 min music training over a period of eight weeks, whereas children in the math group (n = 18) received the same amount of training focusing on mathematical basic skills, such as numeracy skills, quantity comparison, and counting objectives. The third group of children (n = 18) served as waiting controls. The groups were matched for sex, age, IQ and previous music experiences at baseline. Pre-Post intervention measurements revealed a significant interaction effect of group x time, showing that children in both music and math groups significantly improved their early numeracy skills, whereas children in the control group did not. No significant differences between groups were observed for the visuospatial working memory performances. These results confirm and extend previous findings on transfer effects of music training on mathematical abilities and visuospatial working memory capacity. They show that music and math interventions are similarly effective to enhance children’s mathematical skills. More research is necessary to establish, whether cognitive transfer effects arising from music interventions might facilitate children’s transition from kindergarten to first-grade.

Keywords: music training, mathematical skills, working memory, transfer

Procedia PDF Downloads 256
28736 Fabrication of Titanium Diboride-Based High Emissive Paint Coating Using Economical Dip Coating Method for High Temperature Applications

Authors: Atasi Dan, Kamanio Chattopadhyay, Bikramjit Basu

Abstract:

A cost-effective titanium diboride (TiB2) paint coating has been developed on stainless steel substrate using commercially available polyvinylpyrrolidone as a binder by convenient dip-coating technique. The emittance of the coating has been explored by tailoring various process parameters to obtain highest thermal radiation. The optimized coating has achieved a high thermal emittance of 0.85. In addition, the coating exhibited an excellent thermal stability while heat-treated at 500 °C in air. Along with the emittance, the structural and physical properties of the As-deposited and heat-treated coatings have been investigated systematically. The high temperature annealing has not affected the emittance, chemical composition and morphology of the coating significantly. Hence, the fabricated paint coating is expected to open up new possibilities for using it as a low-cost, thermally stable emitter in high temperature applications.

Keywords: titanium diboride, emittance, paint coating, thermal stability

Procedia PDF Downloads 271
28735 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir

Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede

Abstract:

Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.

Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution

Procedia PDF Downloads 121
28734 Optimal Sizing and Placement of Distributed Generators for Profit Maximization Using Firefly Algorithm

Authors: Engy Adel Mohamed, Yasser Gamal-Eldin Hegazy

Abstract:

This paper presents a firefly based algorithm for optimal sizing and allocation of distributed generators for profit maximization. Distributed generators in the proposed algorithm are of photovoltaic and combined heat and power technologies. Combined heat and power distributed generators are modeled as voltage controlled nodes while photovoltaic distributed generators are modeled as constant power nodes. The proposed algorithm is implemented in MATLAB environment and tested the unbalanced IEEE 37-node feeder. The results show the effectiveness of the proposed algorithm in optimal selection of distributed generators size and site in order to maximize the total system profit.

Keywords: distributed generators, firefly algorithm, IEEE 37-node feeder, profit maximization

Procedia PDF Downloads 424
28733 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters

Authors: Ammar Nimer Natsheh

Abstract:

Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.

Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control

Procedia PDF Downloads 420
28732 Enhancement of CO2 Capturing Performance of N-Methyldiethanolamine (MDEA) Using with New Class Functionalized Ionic Liquids: Kinetics and Interaction Mechanism Analysis

Authors: Surya Chandra Tiwari, Kamal Kishore Pant, Sreedevi Upadhyayula

Abstract:

CO2 capture using benign cost-effective solvents is an essential unit operation not only in the process industry for CO2 separation and recovery from industrial off-gas streams but also for direct capture from air to clean the environment. Several solvents are identified, by researchers, with high CO2 capture efficiency due to their favorable chemical and physical properties, interaction mechanism with CO2, and low regeneration energy cost. However, N-Methyldiethanolamine (MDEA) is the most frequently used solvent for CO2 capture with promoters such as piperazine (Pz) and monoethanolamine (MEA). These promoters have several issues such as low thermal stability, heat-stable salt formation, and being highly degradable. Therefore, new class promoters need to be used to overcome these issues. Functionalized ionic liquids (FILs) have the potential to overcome these limitations. Hence, in this work, four different new class functionalized ionic liquids (FILs) were used as promoters and determined their effectivity toward enhancement of the CO2 absorption performance. The CO2 absorption is performed at different pressure (2 bar, 4.4 bar, and 7 bar) and different temperature (303, 313, and 323K). The results confirmed that CO2 loading increases around 18 to 22% after 5wt% FILs blended in the MDEA. It was noticed that the CO2 loading increases with increasing pressure and decreases with increasing temperature for all absorbents systems. Further, the absorption kinetics was determined, and results showed that all the FILs provide an excellent absorption rate enhancement. Additionally, for the interaction mechanism study, 13C NMR analysis was performed for the blend aqueous MDEA-CO2 system. The results suggested that the FILs blend MDEA system produced a high amount of carbamates and bicarbonates during CO2 absorption, which further decreases with increasing temperature. Eventually, regeneration energy was calculated, and results confirmed that the energy heat duty penalty was lower in the [TETAH][Im] blend MDEA system. Overall, [TETAH][Pz], [TETAH][Im], [DETAH][Im] and [DETAH][Tz] showed the promising ability as promoters to enhance CO2 capturing performance of MDEA.

Keywords: CO2 capture, interaction mechanism, kinetics, Ionic liquids

Procedia PDF Downloads 98
28731 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The as-received metal powders were used to synthesis bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys using mechanical alloying and high frequency induction heat sintering (HFIHS). The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of the processed materials. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The sintering conditions applied in this process were as follow: heating rate of 350°C/min; sintering time of 4 minutes; sintering temperature of 400°C; applied pressure of 750 Kgf/cm2 (100 MPa); cooling rate of 400°C/min and the process was carried out under vacuum of 10-3 Torr. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti, these phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: nanocrystalline aluminum alloys, mechanical alloying, hardness, elevated temperatures

Procedia PDF Downloads 441