Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 96

Search results for: bifurcation

96 Analyzing a Tourism System by Bifurcation Theory

Authors: Amin Behradfar


‎Tourism has a direct impact on the national revenue for all touristic countries. It creates work opportunities‎, ‎industries‎, ‎and several investments to serve and raise nations performance and cultures. ‎This paper is devoted to analyze dynamical behaviour of a four-dimensional non-linear tourism-based social-ecological system by using the codimension two bifurcation theory‎. ‎In fact we investigate the cusp bifurcation of that‎. ‎Implications of our mathematical results to the tourism‎ ‎industry are discussed‎. Moreover, profitability‎, ‎compatibility and sustainability of the tourism system are shown by the aid of cusp bifurcation and numerical techniques‎.

Keywords: tourism-based social-ecological dynamical systems, cusp bifurcation, center manifold theory, profitability, ‎compatibility, sustainability

Procedia PDF Downloads 368
95 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number

Authors: Amit K. Singh, Subhankar Sen


The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.

Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element

Procedia PDF Downloads 223
94 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan


In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 193
93 Prey-Predator Eco-Epidemiological Model with Nonlinear Transmission Disease

Authors: Qamar J. A. Khan, Fatma Ahmed Al Kharousi


A prey-predator eco-epidemiological model is studied where transmission of the disease between infected and uninfected prey is nonlinear. The interaction of the predator with infected and uninfected prey species depend on their numerical superiority. Harvesting of both uninfected and infected prey is considered. Stability analysis is carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation parameter it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical results for different set of parameters.

Keywords: bifurcation, optimal harvesting, predator, prey, stability

Procedia PDF Downloads 204
92 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi


Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress

Procedia PDF Downloads 42
91 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models

Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows


Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.

Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis

Procedia PDF Downloads 71
90 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI

Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K Rao, S. Ganesh Kamath


The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and haemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially-coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The haemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveals that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the haemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.

Keywords: fluid-structure interaction, arterial stenosis, wall shear stress, carotid artery bifurcation

Procedia PDF Downloads 389
89 A Study on Coronary Artery Dominance and Divisions of Main Trunk of Left Coronary Artery in Adult Human Cadaveric Hearts of South Indian Population

Authors: Chethan Purushothama


Coronary artery disease is one of the major causes of death in developing countries. The coronary arteries show wide range of variations and these variations have not been dealt with different population groups. The present study aims to focus on the pattern and variations of coronary artery in south Indian population. The study was performed to analyze the coronary artery dominance and divisions of main trunk of left coronary artery in 81 isolated adult human cadaveric hearts of South Indian population. The specimens were fixed in 10% formalin and were dissected manually. In our specimens, 74.1% of the hearts were right dominant, 11.1% were left dominant, and 14.8% were co-dominant. Bifurcation, trifurcation, and quadrifurcation of main trunk of left coronary artery were seen in 49.4%, 48.1%, and 2.5% cases respectively. The right dominant hearts had bifurcation, trifurcation and quadrifurcation of main trunk of left coronary artery in 46.7%, 50% and 3.3% hearts respectively. The left dominant hearts had bifurcation and trifurcation of main trunk of left coronary artery in 55.6% and 44.4% cases respectively. The co-dominant hearts had bifurcation and trifurcation of main trunk of left coronary artery in 58.3% and 41.7% respectively. Quadrifurcation of main trunk of left coronary artery were seen only in right dominant hearts. We believe that the data obtained from the present study are important to the interventional cardiologists and radiologists. The details obtained will also be helpful for the clinical anatomists.

Keywords: bifurcation, coronary artery, trifurcation, quadrifurcation

Procedia PDF Downloads 139
88 Bifurcation and Stability Analysis of the Dynamics of Cholera Model with Controls

Authors: C. E. Madubueze, S. C. Madubueze, S. Ajama


Cholera is a disease that is predominately common in developing countries due to poor sanitation and overcrowding population. In this paper, a deterministic model for the dynamics of cholera is developed and control measures such as health educational message, therapeutic treatment, and vaccination are incorporated in the model. The effective reproduction number is computed in terms of the model parameters. The existence and stability of the equilibrium states, disease free and endemic equilibrium states are established and showed to be locally and globally asymptotically stable when R0 < 1 and R0 > 1 respectively. The existence of backward bifurcation of the model is investigated. Furthermore, numerical simulation of the model developed is carried out to show the impact of the control measures and the result indicates that combined control measures will help to reduce the spread of cholera in the population

Keywords: backward bifurcation, cholera, equilibrium, dynamics, stability

Procedia PDF Downloads 346
87 Fractal Analysis of Some Bifurcations of Discrete Dynamical Systems in Higher Dimensions

Authors: Lana Horvat Dmitrović


The main purpose of this paper is to study the box dimension as fractal property of bifurcations of discrete dynamical systems in higher dimensions. The paper contains the fractal analysis of the orbits near the hyperbolic and non-hyperbolic fixed points in discrete dynamical systems. It is already known that in one-dimensional case the orbit near the hyperbolic fixed point has the box dimension equal to zero. On the other hand, the orbit near the non-hyperbolic fixed point has strictly positive box dimension which is connected to the non-degeneracy condition of certain bifurcation. One of the main results in this paper is the generalisation of results about box dimension near the hyperbolic and non-hyperbolic fixed points to higher dimensions. In the process of determining box dimension, the restriction of systems to stable, unstable and center manifolds, Lipschitz property of box dimension and the notion of projective box dimension are used. The analysis of the bifurcations in higher dimensions with one multiplier on the unit circle is done by using the normal forms on one-dimensional center manifolds. This specific change in box dimension of an orbit at the moment of bifurcation has already been explored for some bifurcations in one and two dimensions. It was shown that specific values of box dimension are connected to appropriate bifurcations such as fold, flip, cusp or Neimark-Sacker bifurcation. This paper further explores this connection of box dimension as fractal property to some specific bifurcations in higher dimensions, such as fold-flip and flip-Neimark-Sacker. Furthermore, the application of the results to the unit time map of continuous dynamical system near hyperbolic and non-hyperbolic singularities is presented. In that way, box dimensions which are specific for certain bifurcations of continuous systems can be obtained. The approach to bifurcation analysis by using the box dimension as specific fractal property of orbits can lead to better understanding of bifurcation phenomenon. It could also be useful in detecting the existence or nonexistence of bifurcations of discrete and continuous dynamical systems.

Keywords: bifurcation, box dimension, invariant manifold, orbit near fixed point

Procedia PDF Downloads 140
86 Role of Additional Food Resources in an Ecosystem with Two Discrete Delays

Authors: Ankit Kumar, Balram Dubey


This study proposes a three dimensional prey-predator model with additional food, provided to predator individuals, including gestation delay in predators and delay in supplying the additional food to predators. It is assumed that the interaction between prey and predator is followed by Holling type-II functional response. We discussed the steady states and their local and global asymptotic behavior for the non-delayed system. Hopf-bifurcation phenomenon with respect to different parameters has also been studied. We obtained a range of predator’s tendency factor on provided additional food, in which the periodic solutions occur in the system. We have shown that oscillations can be controlled from the system by increasing the tendency factor. Moreover, the existence of periodic solutions via Hopf-bifurcation is shown with respect to both the delays. Our analysis shows that both delays play an important role in governing the dynamics of the system. It changes the stability behavior into instability behavior. The direction and stability of Hopf-bifurcation are also investigated through the normal form theory and the center manifold theorem. Lastly, some numerical simulations and graphical illustrations have been carried out to validate our analytical findings.

Keywords: additional food, gestation delay, Hopf-bifurcation, prey-predator

Procedia PDF Downloads 19
85 The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation

Authors: Matthaios Katsanikas


We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section.

Keywords: dynamical systems, galactic dynamics, chaos, phase space

Procedia PDF Downloads 32
84 Complexity in a Leslie-Gower Delayed Prey-Predator Model

Authors: Anuraj Singh


The complex dynamics is explored in a prey predator system with multiple delays. The predator dynamics is governed by Leslie-Gower scheme. The existence of periodic solutions via Hopf bifurcation with respect to delay parameters is established. To substantiate analytical findings, numerical simulations are performed. The system shows rich dynamic behavior including chaos and limit cycles.

Keywords: chaos, Hopf bifurcation, stability, time delay

Procedia PDF Downloads 219
83 Long-Term Results of Coronary Bifurcation Stenting with Drug Eluting Stents

Authors: Piotr Muzyk, Beata Morawiec, Mariusz Opara, Andrzej Tomasik, Brygida Przywara-Chowaniec, Wojciech Jachec, Ewa Nowalany-Kozielska, Damian Kawecki


Background: Coronary bifurcation is one of the most complex lesion in patients with coronary ar-tery disease. Provisional T-stenting is currently one of the recommended techniques. The aim was to assess optimal methods of treatment in the era of drug-eluting stents (DES). Methods: The regis-try consisted of data from 1916 patients treated with coronary percutaneous interventions (PCI) using either first- or second-generation DES. Patients with bifurcation lesion entered the analysis. Major adverse cardiac and cardiovascular events (MACCE) were assessed at one year of follow-up and comprised of death, acute myocardial infarction (AMI), repeated PCI (re-PCI) of target ves-sel and stroke. Results: Of 1916 registry patients, 204 patients (11%) were diagnosed with bifurcation lesion >50% and entered the analysis. The most commonly used technique was provi-sional T-stenting (141 patients, 69%). Optimization with kissing-balloons technique was performed in 45 patients (22%). In 59 patients (29%) second-generation DES was implanted, while in 112 pa-tients (55%), first-generation DES was used. In 33 patients (16%) both types of DES were used. The procedure success rate (TIMI 3 flow) was achieved in 98% of patients. In one-year follow-up, there were 39 MACCE (19%) (9 deaths, 17 AMI, 16 re-PCI and 5 strokes). Provisional T-stenting resulted in similar rate of MACCE to other techniques (16% vs. 5%, p=0.27) and similar occurrence of re-PCI (6% vs. 2%, p=0.78). The results of post-PCI kissing-balloon technique gave equal out-comes with 3% vs. 16% of MACCE in patients in whom no optimization technique was used (p=0.39). The type of implanted DES (second- vs. first-generation) had no influence on MACCE (4% vs 14%, respectively, p=0.12) and re-PCI (1.7% vs. 51% patients, respectively, p=0.28). Con-clusions: The treatment of bifurcation lesions with PCI represent high-risk procedures with high rate of MACCE. Stenting technique, optimization of PCI and the generation of implanted stent should be personalized for each case to balance risk of the procedure. In this setting, the operator experience might be the factor of better outcome, which should be further investigated.

Keywords: coronary bifurcation, drug eluting stents, long-term follow-up, percutaneous coronary interventions

Procedia PDF Downloads 98
82 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva


This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: oscillating cylinder, secondary streaming, flow regimes, asymptotic and bifurcation analysis

Procedia PDF Downloads 312
81 Economic Development Process: A Compartmental Analysis of a Model with Two Delays

Authors: Amadou Banda Ndione, Charles Awono Onana


In this paper the compartmental approach is applied to build a macroeconomic model characterized by countries. We consider a total of N countries that are subdivided into three compartments according to their economic status: D(t) denotes the compartment of developing countries at time t, E(t) stands for the compartment of emerging countries at time t while A(t) represents advanced countries at time t. The model describes the process of economic development and includes the notion of openness through collaborations between countries. Two delays appear in this model to describe the average time necessary for collaborations between countries to become efficient for their development process. Our model represents the different stages of development. It further gives the conditions under which a country can change its economic status and demonstrates the short-term positive effect of openness on economic growth. In addition, we investigate bifurcation by considering the delay as a bifurcation parameter and examine the onset and termination of Hopf bifurcations from a positive equilibrium. Numerical simulations are provided in order to illustrate the theoretical part and to support discussion.

Keywords: compartmental systems, delayed dynamical system, economic development, fiscal policy, hopf bifurcation

Procedia PDF Downloads 17
80 Effects of Wind Load on the Tank Structures with Various Shapes and Aspect Ratios

Authors: Doo Byong Bae, Jae Jun Yoo, Il Gyu Park, Choi Seowon, Oh Chang Kook


There are several wind load provisions to evaluate the wind response on tank structures such as API, Euro-code, etc. the assessment of wind action applying these provisions is made by performing the finite element analysis using both linear bifurcation analysis and geometrically nonlinear analysis. By comparing the pressure patterns obtained from the analysis with the results of wind tunnel test, most appropriate wind load criteria will be recommended.

Keywords: wind load, finite element analysis, linear bifurcation analysis, geometrically nonlinear analysis

Procedia PDF Downloads 378
79 Dynamics of the Coupled Fitzhugh-Rinzel Neurons

Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay


Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.

Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks

Procedia PDF Downloads 27
78 Bifurcation and Chaos of the Memristor Circuit

Authors: Wang Zhulin, Min Fuhong, Peng Guangya, Wang Yaoda, Cao Yi


In this paper, a magnetron memristor model based on hyperbolic sine function is presented and the correctness proved by studying the trajectory of its voltage and current phase, and then a memristor chaotic system with the memristor model is presented. The phase trajectories and the bifurcation diagrams and Lyapunov exponent spectrum of the magnetron memristor system are plotted by numerical simulation, and the chaotic evolution with changing the parameters of the system is also given. The paper includes numerical simulations and mathematical model, which confirming that the system, has a wealth of dynamic behavior.

Keywords: memristor, chaotic circuit, dynamical behavior, chaotic system

Procedia PDF Downloads 290
77 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz


Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 264
76 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay


We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 41
75 Detection of Chaos in General Parametric Model of Infectious Disease

Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari


Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.

Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test

Procedia PDF Downloads 207
74 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters

Authors: Ammar Nimer Natsheh


Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.

Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control

Procedia PDF Downloads 294
73 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng


The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 151
72 The Effect of Microgrid on Power System Oscillatory Stability

Authors: Burak Yildirim, Muhsin Tunay Gencoglu


This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.

Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability

Procedia PDF Downloads 155
71 Periodically Forced Oscillator with Noisy Chaotic Dynamics

Authors: Adedayo Oke Adelakun


The chaotic dynamics of periodically forced oscillators with smooth potential has been extensively investigated via theoretical, numerical and experimental simulations. With the advent of the study of chaotic dynamics by means of method of multiple time scale analysis, Melnikov theory, bifurcation diagram, Poincare's map, bifurcation diagrams and Lyapunov exponents, it has become necessary to seek for a better understanding of nonlinear oscillator with noisy term. In this paper, we examine the influence of noise on complex dynamical behaviour of periodically forced F6 - Duffing oscillator for specific choice of noisy parameters. The inclusion of noisy term improves the dynamical behaviour of the oscillator which may have wider application in secure communication than smooth potential.

Keywords: hierarchical structure, periodically forced oscillator, noisy parameters, dynamical behaviour, F6 - duffing oscillator

Procedia PDF Downloads 219
70 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane


This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 294
69 Characterizing the Geometry of Envy Human Behaviour Using Game Theory Model with Two Types of Homogeneous Players

Authors: A. S. Mousa, R. I. Rajab, A. A. Pinto


An envy behavioral game theoretical model with two types of homogeneous players is considered in this paper. The strategy space of each type of players is a discrete set with only two alternatives. The preferences of each type of players is given by a discrete utility function. All envy strategies that form Nash equilibria and the corresponding envy Nash domains for each type of players have been characterized. We use geometry to construct two dimensional envy tilings where the horizontal axis reflects the preference for players of type one, while the vertical axis reflects the preference for the players of type two. The influence of the envy behavior parameters on the Cartesian position of the equilibria has been studied, and in each envy tiling we determine the envy Nash equilibria. We observe that there are 1024 combinatorial classes of envy tilings generated from envy chromosomes: 256 of them are being structurally stable while 768 are with bifurcation. Finally, some conditions for the disparate envy Nash equilibria are stated.

Keywords: game theory, Nash equilibrium, envy Nash behavior, geometric tilings, bifurcation thresholds

Procedia PDF Downloads 31
68 A Study of the Formation, Existence and Stability of Localised Pulses in PDE

Authors: Ayaz Ahmad


TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553

Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics

Procedia PDF Downloads 187
67 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian


Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 131