Search results for: electronic microscopy
1717 NaOH/Pumice and LiOH/Pumice as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil: An Optimization Study
Authors: Joy Marie Mora, Mark Daniel De Luna, Tsair-Wang Chung
Abstract:
Transesterification reaction of soybean oil with methanol was carried out to produce fatty acid methyl esters (FAME) using calcined alkali metal (Na and Li) supported by pumice silica as the solid base catalyst. Pumice silica catalyst was activated by loading alkali metal ions to its surface via an ion-exchange method. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the operating parameters in biodiesel production, namely: reaction temperature, methanol to oil molar ratio, reaction time, and catalyst concentration. Using the optimized sets of parameters, FAME yields using sodium and lithium silicate catalysts were 98.80% and 98.77%, respectively. A pseudo-first order kinetic equation was applied to evaluate the kinetic parameters of the reaction. The prepared catalysts were characterized by several techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) sorptometer, and scanning electron microscopy (SEM). In addition, the reusability of the catalysts was successfully tested in two subsequent cycles.Keywords: alkali metal, biodiesel, Box-Behnken design, heterogeneous catalyst, kinetics, optimization, pumice, transesterification
Procedia PDF Downloads 3071716 Improvement of Heat Dissipation Ability of Polyimide Composite Film
Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han
Abstract:
Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.Keywords: polyimide, heat dissipation, electric device, filler
Procedia PDF Downloads 6811715 Cyclic NGR Peptide Anchored Block Co-Polymeric Nanoparticles as Dual Targeting Drug Delivery System for Solid Tumor Therapy
Authors: Madhu Gupta, G. P. Agrawa, Suresh P. Vyas
Abstract:
Certain tumor cells overexpress a membrane-spanning molecule aminopeptidase N (CD13) isoform, which is the receptor for peptides containing the NGR motif. NGR-modified Docetaxel (DTX)-loaded PEG-b-PLGA polymeric nanoparticles (cNGR-DNB-NPs) were developed and evaluated for their in vitro potential in HT-1080 cell line. The cNGR-DNB-NPs containing particles were about 148 nm in diameter with spherical shape and high encapsulation efficiency. Cellular uptake was confirmed both qualitatively and quantitatively by Confocal Laser Scanning Microscopy (CLSM) and flow cytometry. Both quantitatively and qualitatively results confirmed the NGR conjugated nanoparticles revealed the higher uptake of nanoparticles by CD13-overexpressed tumor cells. Free NGR inhibited the cellular uptake of cNGR-DNB-NPs, revealing the mechanism of receptor mediated endocytosis. In vitro cytotoxicity studies demonstrated that cNGR-DNB-NPs, formulation was more cytotoxic than unconjugated one, which were consistent well with the observation of cellular uptake. Hence, the selective delivery of cNGR-DNB-NPs formulation in CD13-overexpressing tumors represents a potential approach for the design of nanocarrier-based dual targeted delivery systems for targeting the tumor cells and vasculature.Keywords: solid Tumor, docetaxel, targeting, NGR ligand
Procedia PDF Downloads 4831714 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid
Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi
Abstract:
In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point
Procedia PDF Downloads 911713 Enhancing Piezoelectric Properties of PVDF-HFP/PLA/PZT Nanocomposite for Energy Harvesting Application
Authors: Khadija Oumghar, Adil Eddiai, Omar Cherkaoui
Abstract:
Using flexible piezoelectric nanocomposite films in autonomous nano-systems, sensors, and portable electronics has garnered significant attention within the scientific community. This paper investigates the impact of Lead zirconate titanate (PZT) nanoparticles on the crystal structure of polyvinylidene fluoride hexafluoro propylene (PVDF-HFP)/polylactic acid (PLA), its distinctive crystallization behavior, mechanical properties, and the ensuing enhancement in piezoelectricity. In this study, PVDF-HFP/PLA/PZT nanocomposite films were fabricated utilizing the solvent casting technique, incorporating varying concentrations of PZT. Subsequent characterization of the films involved comprehensive analyses employing polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). POM observations revealed a homogeneous dispersion of PZT nanofillers within the PVDF-HFP/PLA matrix. FTIR and XRD analyses confirmed the presence of the β-phase in the nanocomposites, signifying improvements in their piezoelectric properties. The substantial augmentation in piezoelectricity witnessed emphasizes the potential of electroactive nanocomposites for energy harvesting applications. This research contributes to advancing sustainable energy technologies by elucidating the efficacy of PZT-enhanced PVDFHFP-PLA nanocomposites as proficient materials for piezoelectric energy conversion.Keywords: piezoelectric films, energy harvesting, dielectric polymers, nanocomposite
Procedia PDF Downloads 81712 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method
Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar
Abstract:
New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition
Procedia PDF Downloads 5261711 The Conceptual Design Model of an Automated Supermarket
Authors: V. Sathya Narayanan, P. Sidharth, V. R. Sanal Kumar
Abstract:
The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a win-win situation.Keywords: automated supermarket, electronic shopping, polygon-shaped rack, shortest path algorithm for shopping
Procedia PDF Downloads 4081710 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach
Authors: Mukesh Saran, Ashima Bagaria
Abstract:
Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory
Procedia PDF Downloads 3531709 Biosynthesis of Selenium Oxide Nanoparticles by Streptomyces bikiniensis and Its Cytotoxicity as Antitumor Agents against Hepatocellular and Breast Cells Carcinoma
Authors: Maged Syed Ahamd, Manal Mohamed Yasser, Essam Sholkamy
Abstract:
In this paper, we reported that selenium (Se) nanoparticles were firstly biosynthesized with a simple and eco-friendly biological method. Their shape, size, FTIR (Fourier Transform Infrared spectroscopy), UV–vis spectra, TEM (Transmission Electron Microscopy) images and EDS (Energy Dispersive Spectroscopy) pattern have been analyzed. TEM analyses of the samples obtained at different stages indicated that the formation of these Se nanostructures was governed by an incubation time (12- 24- 48 hours). The Se nanoparticles were initially generated and then would transform into crystal seeds for the subsequent growth of nanowires; however obtaining stable Se nanowire with a diameter of about 15-100 nm. EDS shows that Se nanoparticles are entirely pure. The IR spectra showed the peaks at 550 cm-1, 1635 cm-1, 1994 cm-1 and 3430 cm-1 correspond to the presence of Se-O bending and stretching vibrations. The concentrations of Se-NPs (0, 1, 2, 5 µg/ml) did not give significantly effect on both two cell lines while the highest concentrations (10- 100 µg/ml gave significantly effects on them. The lethal dose (ID50%) of Se-NPs on Hep2 G and MCF-7 cells was obtained at 75.96 and 61.86 µg/ml, respectively. Results showed that Se nanoparticles as anticancer agent against MCF-7 cells were more effective than Hep2 G cells. Our results suggest that Se-NPs may be a candidate for further evaluation as a chemotherapeutic agent for breast and liver cancers.Keywords: selenium nanoparticle, Streptomyces bikiniensis, nanowires, chemotherapeutic agent
Procedia PDF Downloads 4471708 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services
Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar
Abstract:
This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.Keywords: civil-id disclosure, awareness, linear regression, multiple regression
Procedia PDF Downloads 621707 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells
Authors: Neha Singh
Abstract:
Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell
Procedia PDF Downloads 1081706 Design of Advanced Materials for Alternative Cooling Devices
Authors: Emilia Olivos, R. Arroyave, A. Vargas-Calderon, J. E. Dominguez-Herrera
Abstract:
More efficient cooling systems are needed to reduce building energy consumption and environmental impact. At present researchers focus mainly on environmentally-friendly magnetic materials and the potential application in cooling devices. The magnetic materials presented in this project belong to a group known as Heusler alloys. These compounds are characterized by a strong coupling between their structure and magnetic properties. Usually, a change in one of them can alter the other, which implies changes in other electronic or structural properties, such as, shape magnetic memory response or the magnetocaloric effect. Those properties and its dependence with external fields make these materials interesting, both from a fundamental point of view, as well as on their different possible applications. In this work, first principles and Monte Carlo simulations have been used to calculate exchange couplings and magnetic properties as a function of an applied magnetic field on Heusler alloys. As a result, we found a large dependence of the magnetic susceptibility, entropy and heat capacity, indicating that the magnetic field can be used in experiments to trigger particular magnetic properties in materials, which are necessary to develop solid-state refrigeration devices.Keywords: ferromagnetic materials, magnetocaloric effect, materials design, solid state refrigeration
Procedia PDF Downloads 2181705 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting
Authors: Hoda Aleali, Nastran Mansour, Maryam Mirzaie
Abstract:
In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.Keywords: nanoscale materials, silver sulfide nanoparticles, nonlinear absorption, nonlinear scattering, optical limiting
Procedia PDF Downloads 3991704 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 1121703 Fouling of Regenerated Ultrafiltration Membrane in Treatment of Oily Wastewater of Palm Oil Refinery
Authors: K. F. Md Yunos, N. S. Pajar, N. S. Azmi
Abstract:
Oily wastewater in Malaysian refinery has become a big issue of water and environment pollution to be solved urgently. The results of an experimental study on separation of oily wastewaters are presented. The characteristic of filtration behavior of commercial polymer ultrafiltration (UF) membranes was evaluated in the treatment of oily wastewater from palm oil refinery. The performance of different molecular weight cut off 5kDa and 10kDa regenerated cellulose membrane were evaluated and compared and the fouling behavior were analyzed by scanning electron microscopy (SEM). The effect of pressure (0.5, 1.0, 1.5, 2.0, 2.5 bar) and sample concentration (100%, 75%, 50%, 25%) on fouling of 5kDa and 10kDa membrane were evaluated. The characteristic of the sample solutions were analyzed for turbidity, total dissolved solid (TDS), total suspended solid (TSS), BOD, and COD. The results showed that the best fit to experimental data corresponds to the cake layer formation followed by the intermediate blocking for the experimental conditions tested. A more detailed analysis of the fouling mechanisms was studied by dividing the filtration curves into different regions corresponding to the different fouling mechanisms. Intermediate blocking and cake layer formation or combinations of them were found to occur during the UF experiments depending on the operating conditions.Keywords: fouling, oily wastewater, regenerated cellulose, ultrafiltration
Procedia PDF Downloads 4221702 Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry
Authors: Kanika Sharma, Shaila Bahl, Birendra Singh, Pratik Kumar, S. P. Lochab, A. Pandey
Abstract:
In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam.Keywords: gamma radiation, ion beam, nanocrystalline, radiation dosimetry
Procedia PDF Downloads 1871701 Synthesize And Physicochemical Characterization Of Biomimetic Scaffold Of Gelatin/zn-incorporated 58s Bioactive Glass
Authors: SeyedMohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn)in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and alkaline phosphate (ALP) activity test were carried out for investigation of MC3T3-E1cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases, and also HA characteristic peaks were detected by X-ray diffraction spectroscopy (XRD)after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of alkaline phosphatase activity (ALP) test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity, and growth of MC3T3-E1cellsin in comparison with other samples in bone tissue engineering.Keywords: scaffold, gelatin, modified bioactive glass, alp, bone tissue engineering
Procedia PDF Downloads 961700 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters
Authors: Nagaraju Pendam, C. P. Vardhani
Abstract:
A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power
Procedia PDF Downloads 6651699 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound
Authors: S. Said, Asmaa A. Abdulrahman
Abstract:
MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT
Procedia PDF Downloads 1071698 Effect of Different Parameters in the Preparation of Antidiabetic Microparticules by Coacervation
Authors: Nawel Ouennoughi, Kamel Daoud
Abstract:
During recent years, new pharmaceutical dosage forms were developed in the research laboratories and which consists of encapsulating one or more active molecules in a polymeric envelope. Several techniques of encapsulation allow obtaining the microparticles or the nanoparticles containing one or several polymers. In the industry, microencapsulation is implemented to fill the following objectives: to ensure protection, the compatibility and the stabilization of an active matter in a formulation, to carry out an adapted working, to improve the presentation of a product, to mask a taste or an odor, to modify and control the profile of release of an active matter to obtain, for example, prolonged or started effect. To this end, we focus ourselves on the encapsulation of the antidiabetic. It is an oral hypoglycemic agent belonging to the second generation of sulfonylurea’s commonly employed in the treatment of type II non-insulin-dependent diabetes in order to improve profile them dissolution. Our choice was made on the technique of encapsulation by complex coacervation with two types of polymers (gelatin and the gum Arabic) which is a physicochemical process. Several parameters were studied at the time of the formulation of the microparticles and the nanoparticles: temperature, pH, ratio of polymers etc. The microparticles and the nanoparticles obtained were characterized by microscopy, laser granulometry, FTIR and UV-visible spectrophotometry. The profile of dissolution obtained for the microparticles showed an improvement of the kinetics of dissolution compared to that obtained for the active ingredient.Keywords: coacervation, gum Arabic, microencapsulation, gelatin
Procedia PDF Downloads 2711697 Impact of Primary Care Telemedicine Consultations On Health Care Resource Utilisation: A Systematic Review
Authors: Anastasia Constantinou, Stephen Morris
Abstract:
Background: The adoption of synchronous and asynchronous telemedicine modalities for primary care consultations has exponentially increased since the COVID-19 pandemic. However, there is limited understanding of how virtual consultations influence healthcare resource utilization and other quality measures including safety, timeliness, efficiency, patient and provider satisfaction, cost-effectiveness and environmental impact. Aim: Quantify the rate of follow-up visits, emergency department visits, hospitalizations, request for investigations and prescriptions and comment on the effect on different quality measures associated with different telemedicine modalities used for primary care services and primary care referrals to secondary care Design and setting: Systematic review in primary care Methods: A systematic search was carried out across three databases (Medline, PubMed and Scopus) between August and November 2023, using terms related to telemedicine, general practice, electronic referrals, follow-up, use and efficiency and supported by citation searching. This was followed by screening according to pre-defined criteria, data extraction and critical appraisal. Narrative synthesis and metanalysis of quantitative data was used to summarize findings. Results: The search identified 2230 studies; 50 studies are included in this review. There was a prevalence of asynchronous modalities in both primary care services (68%) and referrals from primary care to secondary care (83%), and most of the study participants were females (63.3%), with mean age of 48.2. The average follow-up for virtual consultations in primary care was 28.4% (eVisits: 36.8%, secure messages 18.7%, videoconference 23.5%) with no significant difference between them or F2F consultations. There was an average annual reduction of primary care visits by 0.09/patient, an increase in telephone visits by 0.20/patient, an increase in ED encounters by 0.011/patient, an increase in hospitalizations by 0.02/patient and an increase in out of hours visits by 0.019/patient. Laboratory testing was requested on average for 10.9% of telemedicine patients, imaging or procedures for 5.6% and prescriptions for 58.7% of patients. When looking at referrals to secondary care, on average 36.7% of virtual referrals required follow-up visit, with the average rate of follow-up for electronic referrals being higher than for videoconferencing (39.2% vs 23%, p=0.167). Technical failures were reported on average for 1.4% of virtual consultations to primary care. When using carbon footprint estimates, we calculate that the use of telemedicine in primary care services can potentially provide a net decrease in carbon footprint by 0.592kgCO2/patient/year. When follow-up rates are taken into account, we estimate that virtual consultations reduce carbon footprint for primary care services by 2.3 times, and for secondary care referrals by 2.2 times. No major concerns regarding quality of care, or patient satisfaction were identified. 5/7 studies that addressed cost-effectiveness, reported increased savings. Conclusions: Telemedicine provides quality, cost-effective, and environmentally sustainable care for patients in primary care with inconclusive evidence regarding the rates of subsequent healthcare utilization. The evidence is limited by heterogeneous, small-scale studies and lack of prospective comparative studies. Further research to identify the most appropriate telemedicine modality for different patient populations, clinical presentations, service provision (e.g. used to follow-up patients instead of initial diagnosis) as well as further education for patients and providers alike on how to make best use of this service is expected to improve outcomes and influence practice.Keywords: telemedicine, healthcare utilisation, digital interventions, environmental impact, sustainable healthcare
Procedia PDF Downloads 581696 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 1401695 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array
Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin
Abstract:
We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell
Procedia PDF Downloads 1521694 Nanosilver Loaded Biomaterial for Wound Healing Applications: In Vitro Studies
Authors: Sathish Sundar Dhilip Kumar, Nicolette Houreld, Heidi Abrahamse
Abstract:
Silver nanoparticles (AgNPs) are classified as metal-based nanomaterials and have received considerable attention globally for wound healing and tissue engineering applications. Naturally available materials are a significant source of medicinal products to treat numerous diseases; polysaccharides are among them. Polysaccharides are non-toxic, safe, and inexpensive, and it has good biocompatibility and biodegradability. Most polysaccharides are shown to have a positive effect on wound healing processes, including chitosan and gum tragacanth. The present study evaluated the improvement of cellular wound healing by nanosilver-loaded polysaccharide-based biomaterial (CGT-NS) in WS1 cells. The physicochemical properties of prepared CGT-NS were studied using different characterization techniques, and it exhibited better stability and swelling properties in various pH conditions. Surface morphology was studied using scanning electron microscopy, and it revealed the porous morphology of the synthesized CGT-NS. The synthesized biomaterial displayed acceptable antibacterial properties against Gram-positive and Gram-negative bacterial strains, and it may prevent infection. The biocompatibility of the synthesized CGT-NS biomaterial was studied in WS1 cells, where it may lead to promote increased cell adhesion and proliferation properties. Thus, the CGT-NS biomaterial has good potential as a biomaterial in wound healing applications.Keywords: biomaterial, wound healing, nano, silver nanoparticles
Procedia PDF Downloads 1861693 Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications
Authors: Friday Godwin Okibe, Christian Chinweuba Onoyima, Edith Bolanle Agbaji, Victor Olatunji Ajibola
Abstract:
Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery.Keywords: nanocomposite, sodium alginate, hydroxyapatite, biomedical, FTIR, XRD, SEM
Procedia PDF Downloads 3331692 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography
Authors: Mulatu Kassie Birhanu
Abstract:
Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane
Procedia PDF Downloads 2421691 Investigation on Polymer Based Nano-Silver as Food Packaging Materials
Authors: A. M. Metak, T. T. Ajaal, Amal Metak, Tawfik Ajaal
Abstract:
Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.Keywords: nano-silver, antimicrobial food packaging, migration, titanium dioxide
Procedia PDF Downloads 3721690 Soil-Geopolymer Mixtures for Pavement Base and Subbase Layers
Authors: Mohammad Khattak, Bikash Adhikari, Sambodh Adhikari
Abstract:
This research deals with the physical, microstructural, mechanical, and shrinkage characteristics of flyash-based soil-geopolymer mixtures. Medium and high plastic soils were obtained from local construction projects. Class F flyash was used with a mixture of sodium silicate and sodium hydroxide solution to develop soil-geopolymer mixtures. Several mixtures were compacted, cured at different curing conditions, and tested for unconfined compressive strength (UCS), linear shrinkage, and observed under scanning electron microscopy (SEM). The results of the study demonstrated that the soil-geopolymer mixtures fulfilled the UCS criteria of cement treated design (CTD) and cement stabilized design (CSD) as recommended by the department of transportation for pavement base and subbase layers. It was found that soil-geopolymer demonstrated either similar or better UCS and shrinkage characteristics relative to conventional soil-cement mixtures. The SEM analysis revealed that microstructure of soil-geopolymer mixtures exhibited development and steady growth of geopolymerization during the curing period. Based on mechanical, shrinkage, and microstructural characteristics it was suggested that the soil-geopolymer mixtures, has an immense potential to be used as pavement subgrade, subbase, and base layers.Keywords: soil-geopolymer, pavement base, soil stabilization, unconfined compressive strength, shrinkage, microstructure, and morphology
Procedia PDF Downloads 1981689 Microfluidized Fiber Based Oleogels for Encapsulation of Lycopene
Authors: Behic Mert
Abstract:
This study reports a facile approach to structure soft solids from microfluidizer lycopene-rich plant based structure and oil. First carotenoid-rich plant material (pumpkin was used in this study) processed with high-pressure microfluidizer to release lycopene molecules, then an emulsion was formed by mixing processed plant material and oil. While, in emulsion state lipid soluble carotenoid molecules were allowed to dissolve in the oil phase, the fiber material of plant material provided the network which was required for emulsion stabilization. Additional hydrocolloids (gelatin, xhantan, and pectin) up to 0.5% were also used to reinforce the emulsion stability and their impact on final product properties were evaluated via rheological, textural and oxidation studies. Finally, water was removed from emulsion phase by drying in a tray dryer at 40°C for 36 hours, and subsequent shearing resulted in soft solid (ole gel) structures. The microstructure of these systems was revealed by cryo-scanning electron microscopy. Effect of hydrocolloids on total lycopene and surface lycopene contents were also evaluated. The surface lycopene was lowest in gelatin containing oleo gels and highest in pectin-containing oleo gels. This study outlines the novel emulsion-based structuring method that can be used to encapsulate lycopene without the need of separate extraction of them.Keywords: lycopene, encapsulation, fiber, oleo gel
Procedia PDF Downloads 2681688 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft
Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi
Abstract:
Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.Keywords: octorotor, design, PID controller, autonomous, trajectory tracking
Procedia PDF Downloads 306