Search results for: loading situation
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: loading situation

Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences

Authors: Alisha Khanal, Gokhan Saygili

Abstract:

It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.

Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes

Procedia PDF Downloads 148
The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 210
Revolution Biopolibag System Based on Water Hyacinth's Fiber as a Solution for Environmental Friendly Seeding and Seedling

Authors: Supriady R. P. Siregar, Rizki Barkah Aulia, Dhiya Fadilla Dewi

Abstract:

Polybag is a plastic that is used to seed plants. The common type that used for polybag is a synthetic that made from petroleum such as polyethylene. Beside the character of the raw material that are non-renewable and limited, synthetic polybag ability to disintegrate in the environment is very low. According to that situation, we need a solution to overcome these problems by creating an environmentally friendly polybag. In this research, using the water hyacinth plant fibers (Eichornia crassipes) as a major component in manufacturing the environmentally friendly polybag, the water hyacinth (Eichornia crassipes) contains approximately 60% cellulose. The research method used is an experiment by testing the mechanical characters and biodegradability bio-polybag water hyacinth fibers (Eichornia crassipes) on three medium that is dissolved in water, river water and buried in soil. The research shows bio-polybag of hyacinth fibers can rapidly degraded. This study is expected to be the beginning of the creation bio-polybag of water hyacinth fiber (Eichornia crassipes) and can be applied in agriculture.

Keywords: revolution, biopolybag, renewable, environment

Procedia PDF Downloads 243
A Review on Water Models of Surface Water Environment

Authors: Shahbaz G. Hassan

Abstract:

Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods.

Keywords: empirical models, mathematical, statistical, water quality

Procedia PDF Downloads 267
Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud

Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan

Abstract:

For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.

Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis

Procedia PDF Downloads 292
Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 411
Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine

Abstract:

The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 254
Variability of Surface Air Temperature in Sri Lanka and Its Relation to El Nino Southern Oscillation and Indian Ocean Dipole

Authors: Athdath Waduge Susantha Janaka Kumara, Xiefei Zhi, Zin Mie Mie Sein

Abstract:

Understanding the air temperature variability is crucially important for disaster risk reduction and management. In this study, we used 15 synoptic meteorological stations to assess the spatiotemporal variability of air temperature over Sri Lanka during 1972–2021. The empirical orthogonal function (EOF), Principal component analysis (PCA), Mann-Kendall test, power spectrum analysis and correlation coefficient analysis were used to investigate the long-term trends of air temperature and their possible relation to sea surface temperature (SST) over the region. The results indicate that an increasing trend in air temperature was observed with the abrupt climate change noted in the year 1994. The spatial distribution of EOF1 (63.5%) shows the positive and negative loading dipole patterns from south to northeast, while EOF2 (23.4%) explains warmer (colder) in some parts of central (south and east) areas. The power spectrum of PC1 (PC2) indicates that there is a significant period of 3-4 years (quasi-2 years). Moreover, Indian Ocean Dipole (IOD) provides a strong positive correlation with the air temperature of Sri Lanka, while the EL Nino Southern Oscillation (ENSO) presents a weak negative correlation. Therefore, IOD events led to higher temperatures in the region. This study’s findings can help disaster risk reduction and management in the country.

Keywords: air temperature, interannaul variability, ENSO, IOD

Procedia PDF Downloads 105
Evaluation of Quality of Rhumel Wadi Waters by Physico-Chemical and Biological Parameters

Authors: Djeddi Hamssa, Kherief Necereddine Saliha, Mehennaoui Fatima Zohra

Abstract:

The objectives of this study are to use different parameters to assess the current pollution status of sediments in Rhumel wadi located in the North-East of Algeria (Constantine), two stations were selected in strategic points and sampled at three occasions on Sptember 2014, Junary 2015 and April 2015. Parameters used in this study were a physico-chimical analysis of water (pH, CE, Dissolved O2), sediments (pH, CE, CaCo3, MO) and contamination level of sediments by cadmium, completed by biological testing and analysis of existing benthic community. The results of the physico-chemical parameters show that the water temperature is average and seasonal, the pH value is acidic, does not exceed 6.64. The amplitude variation may be important from upstream to downstream. The generally high electrical conductivity, for the carbonate nature of the watershed increases from upstream to downstream. The waters of the Rhumel wadi are excessively mineralized, dissolved oxygen, a vital factor for benthic community wildlife downstream decreases with increasing organic loading; oxygen is consumed by the microorganisms to its degradation. Analysis of the benthic fauna and calculating the biotic index show a clear excessive pollution for both upstream and downstream stations.

Keywords: biological analysis, benthic fauna, sediments contamination, cadmium

Procedia PDF Downloads 257
Forecasting Free Cash Flow of an Industrial Enterprise Using Fuzzy Set Tools

Authors: Elena Tkachenko, Elena Rogova, Daria Koval

Abstract:

The paper examines the ways of cash flows forecasting in the dynamic external environment. The so-called new reality in economy lowers the predictability of the companies’ performance indicators due to the lack of long-term steady trends in external conditions of development and fast changes in the markets. The traditional methods based on the trend analysis lead to a very high error of approximation. The macroeconomic situation for the last 10 years is defined by continuous consequences of financial crisis and arising of another one. In these conditions, the instruments of forecasting on the basis of fuzzy sets show good results. The fuzzy sets based models turn out to lower the error of approximation to acceptable level and to provide the companies with reliable cash flows estimation that helps to reach the financial stability. In the paper, the applicability of the model of cash flows forecasting based on fuzzy logic was analyzed.

Keywords: cash flow, industrial enterprise, forecasting, fuzzy sets

Procedia PDF Downloads 212
Synthesis and Characterization of Chitosan Schiff Base Supported Pd(II) Catalyst and Its Application in Suzuki Coupling Reactions

Authors: Talat Baran

Abstract:

Palladium-catalyzed Suzuki coupling reactions are powerful ways for synthesis of biaryls compounds and so far different palladium sources as have been used in catalyst systems. However, the high cost of the ligands using as support materials for palladium ion and so researchers have explored alternative low-cost support materials such as silica, cellule and zeolite. A natural polymer chitosan is suitable for support material because of it unique properties such as eco-friendly, renewable, abundant, low cost, biodegradable and it has free reactive -NH2 and –OH groups. Especially, pendant amino groups of chitosan can easily react with carbonyl groups of aldehyde or ketone by Schiff base formation and thus palladium ions can coordinate with imine groups of Schiff base. This purpose, in this study, firstly a new chitosan Schiff base supported palladium (II) catalyst was synthesized and its chemical structure was characterized with FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES and magnetic moment techniques. Then catalytic performance of the catalyst was investigated in Suzuki cross coupling reactions under simple and fast microwave heating methods. Also, recycle activity of palladium catalyst was tested under optimum condition and the catalyst showed long life time. At the end of catalytic performance tests of chitosan supported palladium (II) catalysts indicated high turnover numbers, turnover frequency and selectivity with very small loading catalyst

Keywords: catalyst, chitosan, Schiff base, Suzuki coupling

Procedia PDF Downloads 330
Safety Analysis and Accident Modeling of Transportation in Srinagar City

Authors: Adinarayana Badveeti, Mohammad Shafi Mir

Abstract:

In Srinagar city, in India, road safety is an important aspect that creates ecological balance and social well being. A road accident creates a situation that leaves behind distress, sorrow, and sufferings. Therefore identification of causes of road accidents becomes highly essential for adopting necessary preventive measures against a critical event. The damage created by road accidents to large extent is unrepairable and therefore needs attention to eradicate this continuously increasing trend of awful 'epidemic'. Road accident in India is among the highest in the world, with at least approximately 142.000 people killed each year on the road. Kashmir region is an ecologically sensitive place but lacks necessary facilities and infrastructure regarding road transportation, ultimately resulting in the critical event-road accidents creating a major problem for common people in the region. The objective of this project is to study the safety aspect of Srinagar City and also model the accidents with different aspect that causes accidents and also to suggest the possible remedies for lessening/eliminating the road accidents.

Keywords: road safety, road accident, road infrastructure, accident modeling

Procedia PDF Downloads 261
Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model

Procedia PDF Downloads 175
Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis

Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan

Abstract:

A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.

Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production

Procedia PDF Downloads 39
Assay for SARS-Cov-2 on Chicken Meat

Authors: R. Mehta, M. Ghogomu, B. Schoel

Abstract:

Reports appeared in 2020 about China detecting SARS-Cov-2 (Covid-19) on frozen meat, shrimp, and food packaging material. In this study, we examined the use of swabs for the detection of Covid-19 on meat samples, and chicken breast (CB) was used as a model. Methods: Heat inactivated SARS-Cov-2 virus (IV) from Microbiologics was loaded onto the CB, swabbing was done, and the recovered inactivated virus was subjected to the Machery & Nagel NucleoSpin RNAVirus kit for RNA isolation according to manufacturer's instructions. For RT-PCR, the IDT 2019-nCoV RUO Covid-19 test kit was used with the Taqman Fast Virus 1-step master mix. The limit of detection (LOD) of viral load recovered from the CB was determined under various conditions: first on frozen CB where the IV was introduced on a defined area, then on frozen CB, with IV spread-out, and finally, on thawed CB. Results: The lowest amount of IV which can be reliably detected on frozen CB was a load of 1,000 - 2,000 IV copies where the IV was loaded on one spot of about 1 square inch. Next, the IV was spread out over a whole frozen CB about 16 square inches. The IV could be recovered at a lowest load of 4,000 to 8,000 copies. Furthermore, the effects of temperature change on viral load recovery was investigated i.e., if raw unfrozen meat became contaminated and remains for 1 hour at 4°C or gets refrozen. The amount of IV recovered successfully from CB kept at 4°C and the refrozen CB was similar to the recovery gotten from loading the IV directly on the frozen CB. In conclusion, an assay using swabs was successfully established for the detection of SARS-Cov-2 on frozen or raw (unfrozen) CB with a minimal load of up to 8,000 copies spread over 16 square inches.

Keywords: assay, COVID-19, meat, SARS-Cov-2

Procedia PDF Downloads 206
Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 532
Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading

Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed

Abstract:

Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.

Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum

Procedia PDF Downloads 395
Key Determinants of Human-Wolf (Canis lupus) Conflict in Shabestar County's Villages of East Azerbaijan Province, Iran

Authors: Nader Habibzadeh

Abstract:

Developing effective and well-targeted conservation strategies is dependent upon fully understanding the complexities of the local situation. We attempted to discern the main likely wolf-human conflict contributing variables in households of Shabestar county’s villages. Data were collected through questions in 53 semi-structured interviews in 36 villages across Shabestar district in summer 2014. The results suggested that people who have reportedly suffered livestock depredation and who have alternative income sources to livestock, are likely to be particularly hostile toward wildlife. With rapid assessment of households using these few key variables we are able to identify likely conflict hotspots and target conflict resolution efforts in those villages. Based on these results, the most important initial strategies for reducing conflict would be reducing the number of livestock killed by wolf, increasing opportunities to generate income only from livestock holdings rather than alternative income sources.

Keywords: human-wildlife conflict, wolf (Canis lupus), Shabestar, Iran

Procedia PDF Downloads 313
Implementation of Real-World Learning Experiences in Teaching Courses of Medical Microbiology and Dietetics for Health Science Students

Authors: Miriam I. Jimenez-Perez, Mariana C. Orellana-Haro, Carolina Guzman-Brambila

Abstract:

As part of microbiology and dietetics courses, students of medicine and nutrition analyze the main pathogenic microorganisms and perform dietary analyzes. The course of microbiology describes in a general way the main pathogens including bacteria, viruses, fungi, and parasites, as well as their interaction with the human species. We hypothesize that lack of practical application of the course causes the students not to find the value and the clinical application of it when in reality it is a matter of great importance for healthcare in our country. The courses of the medical microbiology and dietetics are mostly theoretical and only a few hours of laboratory practices. Therefore, it is necessary the incorporation of new innovative techniques that involve more practices and community fieldwork, real cases analysis and real-life situations. The purpose of this intervention was to incorporate real-world learning experiences in the instruction of medical microbiology and dietetics courses, in order to improve the learning process, understanding and the application in the field. During a period of 6 months, medicine and nutrition students worked in a community of urban poverty. We worked with 90 children between 4 and 6 years of age from low-income families with no access to medical services, to give an infectious diagnosis related to nutritional status in these children. We expect that this intervention would give a different kind of context to medical microbiology and dietetics students improving their learning process, applying their knowledge and laboratory practices to help a needed community. First, students learned basic skills in microbiology diagnosis test during laboratory sessions. Once, students acquired abilities to make biochemical probes and handle biological samples, they went to the community and took stool samples from children (with the corresponding informed consent). Students processed the samples in the laboratory, searching for enteropathogenic microorganism with RapID™ ONE system (Thermo Scientific™) and parasites using Willis and Malloy modified technique. Finally, they compared the results with the nutritional status of the children, previously measured by anthropometric indicators. The anthropometric results were interpreted by the OMS Anthro software (WHO, 2011). The microbiological result was interpreted by ERIC® Electronic RapID™ Code Compendium software and validated by a physician. The results were analyses of infectious outcomes and nutritional status. Related to fieldwork community learning experiences, our students improved their knowledge in microbiology and were capable of applying this knowledge in a real-life situation. They found this kind of learning useful when they translate theory to a real-life situation. For most of our students, this is their first contact as health caregivers with real population, and this contact is very important to help them understand the reality of many people in Mexico. In conclusion, real-world or fieldwork learning experiences empower our students to have a real and better understanding of how they can apply their knowledge in microbiology and dietetics and help a much- needed population, this is the kind of reality that many people live in our country.

Keywords: real-world learning experiences, medical microbiology, dietetics, nutritional status, infectious status.

Procedia PDF Downloads 137
Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina

Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez

Abstract:

Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).

Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS

Procedia PDF Downloads 388
The Urban Project: Metropolization Tool and Sustainability Vector - Case of Constantine

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad, Chouabbia Khedidja

Abstract:

Cities grow, large or small; they seek to gain a place in the market competition, which talks to sell a product that is the city itself. The metropolis are large cities enjoying a legal status and assets providing their dominions elements on a territory larger than their range, do not escape this situation. Thus, the search for promising tool metropolises better development and durability meet the challenges as economic, social and environmental is timely. The urban project is a new way to build the city; it is involved in the metropolises of two ways, either to manage the crisis and to meet the internal needs of the metropolis, or by creating a regional attractiveness with their potential. This communication will address the issue of urban project as a tool that has and should find a place in the panoply of existing institutional tools. Based on the example of the modernization project of the metropolis of eastern Algeria "Constantine", we will examine what the urban project can bring to a city, the extent of its impact but also the relationship between the visions actors so metropolization a success.

Keywords: urban project, metropolis, institutional tools, Constantine

Procedia PDF Downloads 406
Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 325
Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts

Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng

Abstract:

Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.

Keywords: degradation, kinetics, methyl orange, photocatalysis

Procedia PDF Downloads 343
Tracing Back the Bot Master

Authors: Sneha Leslie

Abstract:

The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.

Keywords: bonet, DDoS attack, network security, detection system, metasploit framework

Procedia PDF Downloads 256
Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari

Abstract:

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

Keywords: experimental study, finite element model, flexural and shear yielding, t-resisting frame

Procedia PDF Downloads 236
Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System

Authors: Tshilenge Kabongo, John Kabuba

Abstract:

The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.

Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment

Procedia PDF Downloads 140
On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman

Abstract:

Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 373
Performance Evaluation of Pilot Rotating Biological Contactor for Decentralised Management of Domestic Sewage in Delhi

Authors: T. R. Sreekrishnan, Mukesh Khare, Dinesh Upadhyay

Abstract:

In a Rotating Biological Contactor (RBC), the biological film responsible for removal of pollutants is formed on the surface of discs. Evaluation studies of a pilot RBC designed to treat sewage of 150 persons with BOD Loading Rate: 8.2–26.7 g/m2/d, Discharge: 57.6 – 115.2 m3/day, HRT 1.25 – 2.5 hrs, at STP Yamuna Vihar Delhi. Removal of organic materials through use of fixed film reactors such as RBC is accomplished by means of a biological film on the fixed media. May and June in Delhi are dry summer months where the ambient temperature is in the range of 35oC to 45oC. July is a wet monsoon month that receives occasional precipitation, cloud cover, high humidity, with ambient temperature in the range of 30oC to 35oC. The organic and inorganic loads to the RBC employed in this study are actual city sewage conditions. Average in fluent BOD concentrations have been 330 mg/l, 245 mg/l and 160 mg/l and the average COD concentrations have been 670 mg/l, 500 mg/l, and 275 mg/l. The city sewage also has high concentration of ammonia, phosphorous, total suspended solids (TSS). pH of the city sewage is near neutral. Overall, the substrate conditions of city sewage are conducive for biological treatment though aerobic process. The presentation is a part of the ongoing collaborative research initiative between IIT Delhi and Karlsruhe Institute of Technology, Germany which is going on for last 15 years or so in the treatment of sewage waste of Delhi using semi-decentralized treatment system based on Rotating Biological Contactor.

Keywords: Rotating Biological Contactor (RBC), COD, BOD, HRT, STP

Procedia PDF Downloads 392
Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution

Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou

Abstract:

Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.

Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical

Procedia PDF Downloads 414
Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 159