Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6260

Search results for: surface mining

6260 Hydro Geochemistry and Water Quality in a River Affected by Lead Mining in Southern Spain

Authors: Rosendo Mendoza, María Carmen Hidalgo, María José Campos-Suñol, Julián Martínez, Javier Rey

Abstract:

The impact of mining environmental liabilities and mine drainage on surface water quality has been investigated in the hydrographic basin of the La Carolina mining district (southern Spain). This abandoned mining district is characterized by the existence of important mineralizations of sulfoantimonides of Pb - Ag and sulfides of Cu - Fe. All surface waters reach the main river of this mining area, the Grande River, which ends its course in the Rumblar reservoir. This waterbody is intended to supply 89,000 inhabitants, as well as irrigation and livestock. Therefore, the analysis and control of the metal(loid) concentration that exists in these surface waters is an important issue because of the potential pollution derived from metallic mining. A hydrogeochemical campaign consisting of 20 water sampling points was carried out in the hydrographic network of the Grande River, as well as two sampling points in the Rumbler reservoir and at the main tailings impoundment draining to the river. Although acid mine drainage (pH below 4) is discharged into the Grande river from some mine adits, the pH values in the river water are always neutral or slightly alkaline. This is mainly the result of a dilution process of the small volumes of mine waters by net alkaline waters of the river. However, during the dry season, the surface waters present high mineralization due to a constant discharge from the abandoned flooded mines and a decrease in the contribution of surface runoff. The concentrations of dissolved Cd and Pb in the water reach values of 2 and 81 µg/l, respectively, exceeding the limit established by the Environmental Quality Standard for surface water. In addition, the concentrations of dissolved As, Cu and Pb in the waters of the Rumblar reservoir reached values of 10, 20 and 11 µg/l, respectively. These values are higher than the maximum allowable concentration for human consumption, a circumstance that is especially alarming.

Keywords: environmental quality, hydrogeochemistry, metal mining, surface water

Procedia PDF Downloads 48
6259 A Review Paper on Data Mining and Genetic Algorithm

Authors: Sikander Singh Cheema, Jasmeen Kaur

Abstract:

In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.

Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining

Procedia PDF Downloads 297
6258 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 287
6257 Project Risk Assessment of the Mining Industry of Ghana

Authors: Charles Amoatey

Abstract:

The issue of risk in the mining industry is a global phenomenon and the Ghanaian mining industry is not exempted. The main purpose of this study is to identify the critical risk factors affecting the mining industry. The study takes an integrated view of the mining industry by examining the contribution of various risk factors to mining project failure in Ghana. A questionnaire survey was conducted to solicit the critical risk factors from key mining practitioners. About 80 respondents from 11 mining firms participated in the survey. The study identified 22 risk factors contributing to mining project failure in Ghana. The five most critical risk factors based on both probability of occurrence and impact were: (1) unstable commodity prices, (2) inflation/exchange rate, (3) land degradation, (4) high cost of living and (5) government bureaucracy for obtaining licenses. Furthermore, the study found that risk assessment in the mining sector has a direct link with mining project sustainability. Mitigation measures for addressing the identified risk factors were discussed. The key findings emphasize the need for a comprehensive risk management culture in the entire mining industry.

Keywords: risk, assessment, mining, Ghana

Procedia PDF Downloads 291
6256 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area

Authors: Bernard Kumi-Boateng, Kofi Bonsu

Abstract:

The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.

Keywords: degradation, GIS, land, mining

Procedia PDF Downloads 237
6255 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 55
6254 Association Rules Mining Task Using Metaheuristics: Review

Authors: Abir Derouiche, Abdesslem Layeb

Abstract:

Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.

Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining

Procedia PDF Downloads 66
6253 The Environmental and Socio Economic Impacts of Mining on Local Livelihood in Cameroon: A Case Study in Bertoua

Authors: Fongang Robert Tichuck

Abstract:

This paper reports the findings of a study undertaken to assess the socio-economic and environmental impacts of mining in Bertoua Eastern Region of Cameroon. In addition to sampling community perceptions of mining activities, the study prescribes interventions that can assist in mitigating the negative impacts of mining. Marked environmental and interrelated socio-economic improvements can be achieved within regional artisanal gold mines if the government provides technical support to local operators, regulations are improved, and illegal mining activity is reduced.

Keywords: gold mining, socio-economic, mining activities, local people

Procedia PDF Downloads 273
6252 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 260
6251 Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 71
6250 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area

Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran

Abstract:

One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.

Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality

Procedia PDF Downloads 216
6249 Object-Centric Process Mining Using Process Cubes

Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst

Abstract:

Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.

Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining

Procedia PDF Downloads 74
6248 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 347
6247 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 375
6246 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 302
6245 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 235
6244 Effects of Surface Topography on Roughness of Glazed Ceramic Substrates

Authors: R. Sarjahani, M. Sheikhattar, S. Javadpour, B. Hashemi

Abstract:

Glazes and their surface characterization is an important subject for ceramic industries. Fabrication of a super smooth surface resistant to stains is a big improvement for those industries. In this investigation, surface topography of popular glazes such as Zircon and Titania based opaque glazes, calcium based matte glaze and transparent glaze has been analyzed by Marsurf M300, SEM, EDS and XRD. Results shows that surface roughness of glazes seriously depends on surface crystallinity, crystal size and shapes.

Keywords: crystallinity, glaze, surface roughness, topography

Procedia PDF Downloads 420
6243 Assessment of Prevalent Diseases Caused by Mining Activities in the Northern Part of Mindanao Island, Philippines

Authors: Odinah Cuartero-Enteria, Kyla Rita Mercado, Jason Salamanes, Aian Pecasales, Sherwin Sabado

Abstract:

The northern part of Mindanao Island, Philippines has sizable reserve of mineral resources. Years ago, mining activities have been flourishing which resulted to both local economic gain but with environmental concerns. This study investigates the prevalent diseases by mining activities in these areas. The study was done using the secondary data gathered from the Rural Health Units (RHU) of the selected areas. The study further determined the prevalent diseases that existed in the three areas from years 2005, 2010 and 2015 indicating before the mining activities and when mining activities are present. The results show that areas which are far from mining activities have fewer cases of patients suffering from air-borne diseases. The top ten most common diseases such as pneumonia, tuberculosis, influenza, upper respiratory tract infection (URTI) and skin diseases were caused by air-borne due to air pollution. Hence, the places where mining activities are present contribute to the prevalent diseases. Thus, addressing the air pollution caused by mining activities is very important.

Keywords: Philippines, Mindanao Island, mining activities, pollution, prevalent diseases

Procedia PDF Downloads 371
6242 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 377
6241 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 412
6240 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining

Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail

Abstract:

Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.

Keywords: composite material, ground improvement, mining legacy, resin

Procedia PDF Downloads 262
6239 Analysis of Reliability of Mining Shovel Using Weibull Model

Authors: Anurag Savarnya

Abstract:

The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.

Keywords: reliability, Weibull model, electric mining shovel

Procedia PDF Downloads 408
6238 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 71
6237 An Adaptive Distributed Incremental Association Rule Mining System

Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya

Abstract:

Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.

Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents

Procedia PDF Downloads 308
6236 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 24
6235 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning

Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah

Abstract:

In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.

Keywords: 3D imaging, shotcrete, surface model, tunnel stability

Procedia PDF Downloads 219
6234 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 404
6233 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 68
6232 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 241
6231 Reviewing Privacy Preserving Distributed Data Mining

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.

Keywords: data mining, distributed data mining, privacy protection, privacy preserving

Procedia PDF Downloads 383