Search results for: organic acids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3144

Search results for: organic acids

1464 The Study of Spray Drying Process for Skimmed Coconut Milk

Authors: Jaruwan Duangchuen, Siwalak Pathaveerat

Abstract:

Coconut (Cocos nucifera) belongs to the family Arecaceae. Coconut juice and meat are consumed as food and dessert in several regions of the world. Coconut juice contains low proteins, and arginine is the main amino acid content. Coconut meat is the endosperm of coconut that has nutritional value. It composes of carbohydrate, protein and fat. The objective of this study is utilization of by-products from the virgin coconut oil extraction process by using the skimmed coconut milk as a powder. The skimmed coconut milk was separated from the coconut milk in virgin coconut oil extraction process that consists approximately of protein 6.4%, carbohydrate 7.2%, dietary fiber 0.27 %, sugar 6.27%, fat 3.6 % and moisture content of 86.93%. This skimmed coconut milk can be made to powder for value - added product by using spray drying. The factors effect to the yield and properties of dry skimmed coconut milk in spraying process are inlet, outlet air temperature and the maltodextrin concentration. The percentage of maltodextrin content (15, 20%), outlet air temperature (80 ºC, 85 ºC, 90 ºC) and inlet air temperature (190 ºC, 200 ºC, 210 ºC) were conducted to the skimmed coconut milk spray drying process. The spray dryer was kept air flow rate (0.2698 m3 /s). The result that shown 2.22 -3.23% of moisture content, solubility, bulk density (0.4-0.67g/mL), solubility, wettability (4.04 -19.25 min) for solubility in the water, color, particle size were analyzed for the powder samples. The maximum yield (18.00%) of spray dried coconut milk powder was obtained at 210 °C of temperature, 80°C of outlet temperature and 20% maltodextrin for 27.27 second for drying time. For the amino analysis shown that the high amino acids are Glutamine (16.28%), Arginine (10.32%) and Glycerin (9.59%) by using HPLP method (UV detector).

Keywords: skimmed coconut milk, spray drying, virgin coconut oil process (VCO), maltodextrin

Procedia PDF Downloads 332
1463 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects

Procedia PDF Downloads 410
1462 H2 Production and Treatment of Cake Wastewater Industry via Up-Flow Anaerobic Staged Reactor

Authors: Manal A. Mohsen, Ahmed Tawfik

Abstract:

Hydrogen production from cake wastewater by anaerobic dark fermentation via upflow anaerobic staged reactor (UASR) was investigated in this study. The reactor was continuously operated for four months at constant hydraulic retention time (HRT) of 21.57 hr, PH value of 6 ± 0.6, temperature of 21.1°C, and organic loading rate of 2.43 gCOD/l.d. The hydrogen production was 5.7 l H2/d and the hydrogen yield was 134.8 ml H2 /g CODremoved. The system showed an overall removal efficiency of TCOD, TBOD, TSS, TKN, and Carbohydrates of 40 ± 13%, 59 ± 18%, 84 ± 17%, 28 ± 27%, and 85 ± 15% respectively during the long term operation period. Based on the available results, the system is not sufficient for the effective treatment of cake wastewater, and the effluent quality of UASR is not complying for discharge into sewerage network, therefore a post treatment is needed (not covered in this study).

Keywords: cake wastewater industry, chemical oxygen demand (COD), hydrogen production, up-flow anaerobic staged reactor (UASR)

Procedia PDF Downloads 380
1461 Conjugated Linoleic Acid (CLA) Health Benefits and Sources

Authors: Hilal Ahmad Punoo

Abstract:

Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid with two conjugated double bonds. Of more than a dozen isomers of CLA found naturally in dairy and meat products from ruminants, c-9, t-11 and t-10, c-12 are the two isomers with known physiological importance, including anticarcinogenic, antidiabetic, antilipogenic, and antiatherosclerotic effects. Conjugated linoleic acids (CLA) may influence the onset and severity of several chronic diseases, including various cancers, atherosclerosis, obesity, bone density loss, and diabetes. These findings are of special interest to the agriculture community, because dietary sources of CLA are almost exclusively beef and dairy products. Thus, a better understanding of the specific isomers and mechanisms responsible for these positive effects of CLA on human health would be both prudent and economically beneficial. To date, research related to the advantages of CLA consumption on human health has been conducted using experimental laboratory animals and cell culture systems. These data consistently show that relatively low levels of CLA can influence risk of cancer. Further, very recent investigations suggest that the predominate CLA isoform (cis-9, trans-11 CLA or rumenic acid) found in beef and milk fat possesses anticarcinogenic effects but does not alter body composition; the trans-10, cis-12 CLA has been shown to inhibit lipogenesis. Clearly, further work, especially using human subjects, will be required to characterize the potential benefits of CLA consumption on human health. Moreover, we suggest that foods naturally containing high amounts of CLA (e.g., beef and dairy products) be considered as meeting the definition of functional foods.

Keywords: conjugated linoleic acid, potential health benefits, fats, animals, humans

Procedia PDF Downloads 308
1460 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
1459 Degradation of Rose Bengal by UV in the Presence of NiFe2O4 Nanoparticles

Authors: H. Boucheloukh, N. Aoun, S. Rouissa, T. Sehili, F. Parrino, V. Loddo

Abstract:

Photocatalysis has made a revolution in wastewater treatment and the elimination of persistent organic pollutants. This process is based on the use of semiconductors as photocatalysts. In this study, nickel ferrite spinel (NiFe2O4) nanoparticles were successfully synthesized by the sol-gel route. The structural, morphological, elemental composition, chemical state, particle size, optical and electrochemical characterizations using powder X-ray diffraction (P-XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy (EDAX ). We tested the prepared NiFe2O4(NPS)by monitoring the degradation of Rose Bengal (RB) dye in an aqueous solution under direct sunlight irradiation. The effects of catalyst dosage and dye concentration were also considered for the effective degradation of RB dye. The optimum catalyst dosage and concentration of dye were found to be 1 g/L and 10 μM, respectively. A maximum of 80% photocatalytic degradation efficiency (DE%) was achieved at 120 min of direct sunlight irradiation.

Keywords: Rose Bengal, Nickelate, photocatalysis, irradiation

Procedia PDF Downloads 213
1458 The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells

Authors: Bahadir Batar, Elif Serdal, Berna Erdal, Hasan Ogul

Abstract:

Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance.

Keywords: cisplatin, microRNA, triple-negative breast cancer, WWOX

Procedia PDF Downloads 131
1457 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 501
1456 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 424
1455 Comparative Studies on Spontaneous Imbibition of Surfactant/Alkaline Solution in Carbonate Rocks

Authors: M. Asgari, N. Heydari, N. Shojai Kaveh, S. N. Ashrafizadeh

Abstract:

Chemical flooding methods are having importance in enhanced oil recovery to recover the trapped oil after conventional recovery, as conventional oil resources become scarce. The surfactant/alkaline process consists of injecting alkali and synthetic surfactant. The addition of surfactant to injected water reduces oil/water IFT and/or alters wettability. The alkali generates soap in situ by reaction between the alkali and naphthenic acids in the crude oil. Oil recovery in fractured reservoirs mostly depends on spontaneous imbibition (SI) of brine into matrix blocks. Thus far, few efforts have been made toward understanding the relative influence of capillary and gravity forces on the fluid flow. This paper studies the controlling mechanisms of spontaneous imbibition process in chalk formations by consideration of type and concentration of surfactants, CMC, pH and alkaline reagent concentration. Wetting properties of carbonate rock have been investigated by means of contact-angle measurements. Interfacial-tension measurements were conducted using spinning drop method. Ten imbibition experiments were conducted in atmospheric pressure and various temperatures from 30°C to 50°C. All experiments were conducted above the CMC of each surfactant. The experimental results were evaluated in terms of ultimate oil recovery and reveal that wettability alteration achieved by nonionic surfactant, which led to imbibition of brine sample containing the nonionic surfactant, while IFT value was not in range of ultra low. The displacement of oil was initially dominated by capillary forces. However, for cationic surfactant, gravity forces was the dominant force for oil production by surfactant solution to overcome the negative capillary pressure.

Keywords: alkaline, capillary, gravity, imbibition, surfactant, wettability

Procedia PDF Downloads 230
1454 Removal of Trimethoprim and Sulfamethoxazole in Solid Waste Leachate by Two-Stage Membrane Bioreactor under High Mixed Liquor Suspended Solids Concentration

Authors: Nilubon Thongtan, Wilai Chiemchaisri, Chart Chiemchaisri

Abstract:

Purpose of study is to investigate performance of two-stage membrane bioreactor (2S-MBR) to treat trimethoprim and sulfamethoxazole in solid waste leachate. This system consists of 2 tanks, anoxic tank with incline plates and MBR tank. The system was operated at 12 h-HRT each, of which the MBR MLSS concentration was operated at 25,000-35,000 mg/L. The average sCOD concentration of the fed leachate was 6,310±3,595 mg/L. It shows that high organic removals in terms of sCOD and sBOD were achieved as of 97-99% and 99%, respectively. The TKN and NH3-N removals were 76-98% and 91-99%, respectively. Concurrently, trimethoprim and sulfamethoxazole were detected in the leachate with concentrations of 113-0 μg/L and 74-2 μg/L, respectively. High removals of trimethoprim and sulfamethoxazole were also found as of 95-99% and 85-95%, respectively. In sum, this MBR feature and operation gave achievement in treatment of macro-pollutants including trimethoprim and sulfamethoxazole existing in low levels in the solid waste leachate.

Keywords: membrane bioreactor, solid waste leachate, sulfamethoxazole, trimethoprim

Procedia PDF Downloads 146
1453 The Feasibility of Anaerobic Digestion at 45⁰C

Authors: Nuruol S. Mohd, Safia Ahmed, Rumana Riffat, Baoqiang Li

Abstract:

Anaerobic digestion at mesophilic and thermophilic temperatures have been widely studied and evaluated by numerous researchers. Limited extensive research has been conducted on anaerobic digestion in the intermediate zone of 45°C, mainly due to the notion that limited microbial activity occurs within this zone. The objectives of this research were to evaluate the performance and the capability of anaerobic digestion at 45°C in producing class A biosolids, in comparison to a mesophilic and thermophilic anaerobic digestion system operated at 35°C and 55°C, respectively. In addition to that, the investigation on the possible inhibition factors affecting the performance of the digestion system at this temperature will be conducted as well. The 45°C anaerobic digestion systems were not able to achieve comparable methane yield and high-quality effluent compared to the mesophilic system, even though the systems produced biogas with about 62-67% methane. The 45°C digesters suffered from high acetate accumulation, but sufficient buffering capacity was observed as the pH, alkalinity and volatile fatty acids (VFA)-to-alkalinity ratio were within recommended values. The accumulation of acetate observed in 45°C systems were presumably due to the high temperature which contributed to high hydrolysis rate. Consequently, it produced a large amount of toxic salts that combined with the substrate making them not readily available to be consumed by methanogens. Acetate accumulation, even though contributed to 52 to 71% reduction in acetate degradation process, could not be considered as completely inhibitory. Additionally, at 45°C, no ammonia inhibition was observed and the digesters were able to achieve volatile solids (VS) reduction of 47.94±4.17%. The pathogen counts were less than 1,000 MPN/g total solids, thus, producing Class A biosolids.

Keywords: 45°C anaerobic digestion, acetate accumulation, class A biosolids, salt toxicity

Procedia PDF Downloads 304
1452 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive

Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas

Abstract:

Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.

Keywords: biochar, biogas, bioreactor, sewage sludge

Procedia PDF Downloads 170
1451 The Effects of Eriocitrin on Obesity and Hepatic Steatosis in High-Fat Diet-Induced Obese C57BL/6 Mice

Authors: So Young Kim, Eun-Young Kwon, Bora Choi, Mi Kyeong Yu, Seon Jeong Lee, Myung-Sook Choi

Abstract:

Lemon (Citrus limon) has various beneficial effect. Eriocitrin (eriodictyol 7-rutinoside) is the main ingredient of lemon fruit and is known to have antioxidative effects. However, there has been little research about the effects of eriocitrin on obesity and regulation of lipid profiles levels. In the present study, we investigated the anti-obesity and lipid-lowering effects of eriocitrin in mice fed high-fat diet (HFD). The 4 week-old male C57BL/6 mice were randomly divided into two groups and were fed HFD (20% fat, w/w) and HFD supplemented with eriocitrin (0.005%, w/w, EC) for 16 weeks. Food intake, body weight and white adipose tissue weight (WAT) were measured and plasma free fatty acid (FFA), apolipoprotein (Apo) B100 level and hepatic enzyme activity were analyzed. No differences were shown between the HFD and EC groups in body weight and food intake. However EC supplementation significantly reduced the weights of epididymal, subcutaneous and total WAT. In addition, the levels of plasma FFA and Apo B100 were significantly decreased in the EC group compared with the HFD group. Moreover, the activities of glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) related to fatty acids synthesis were significantly lower in the EC group than in the HFD group in liver. Therefore, this study indicates that eriocitrin has beneficial effects on adiposity and nonalcholic fatty liver diseases by modulating hepatic lipid-regulating enzyme activities and plasma lipid profile.

Keywords: antiobesity, eriocitrin, high fat diet, lipid lowering

Procedia PDF Downloads 452
1450 Mesoporous Tussah Silk Fibroin Microspheres for Drug Delivery

Authors: Weitao Zhou, Qing Wang, Jianxin He, Shizhong Cui

Abstract:

Mesoporous Tussah silk fibroin (TSF) spheres were fabricated via the self-assembly of TSF molecules in aqueous solutions. The results showed that TSF particles were approximately three-dimensional spheres with the diameter ranging from 500nm to 6μm without adherence. More importantly, the surface morphology is mesoporous structure with nano-pores of 20nm - 200nm in size. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) studies demonstrated that mesoporous TSF spheres mainly contained beta-sheet conformation (44.1 %) as well as slight amounts of random coil (13.2 %). Drug release test was performed with 5-fluorouracil (5-Fu) as a model drug and the result indicated the mesoporous TSF microspheres had a good capacity of sustained drug release. It is expected that these stable and high-crystallinity mesoporous TSF sphere produced without organic solvents, which have significantly improved drug release properties, is a very promising material for controlled gene medicines delivery.

Keywords: Tussah silk fibroin, porous materials, microsphere, drug release

Procedia PDF Downloads 459
1449 Temperature Susceptibility for Optimal Biogas Production

Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji

Abstract:

Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.

Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test

Procedia PDF Downloads 202
1448 Determination of Antioxidant Activity in Raphanus raphanistrum L.

Authors: Esma Hande Alıcı, Gülnur Arabacı

Abstract:

Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.

Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish

Procedia PDF Downloads 276
1447 Enhanced Phytoremediation Using Endophytic Microbes

Authors: Raymond Oriebe Anyasi, Harrison Atagana

Abstract:

The use of a plant in the detoxification of several toxin is been known to be enhanced by various microbial endophytes which have been reported to be contained in plants growing in any contaminated soil. Plants in their natural state are mostly colonized by endophytes which in the process forms symbiotic associations with the host plants. These benefits that the endophytes offer to the plants include amongst others to: Enhance plants growth through the production of various phytohormones; increase in the resistance of environmental stresses; produce important bioactive metabolites; help in the fixing of nitrogen in the plants organelles; help in the metal translocation and accumulation in plants; assist in the production of enzymes involves the degradation of organic contaminants. Therefore recognizing these natural processes of the microbes will enable the understanding of the effective mechanism for enhanced phytoremediation. The aim of this study was to survey the progressiveness in the study involving endophyte-assisted phytoremediation of contaminants; highlighting various pollutants, the plants used, the endophytes studied as well as the type of interaction between the plants and the microbes so as to proffer a better future prospect for the technology.

Keywords: phytoremediation, endophytes, microbes, pollution, environmental management, plants

Procedia PDF Downloads 346
1446 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes

Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi

Abstract:

The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/ml

Keywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture

Procedia PDF Downloads 476
1445 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media

Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde

Abstract:

Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.

Keywords: adsorption, aqueous media, fishbone, kinetic study

Procedia PDF Downloads 131
1444 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 302
1443 Influence of the Cooking Technique on the Iodine Content of Frozen Hake

Authors: F. Deng, R. Sanchez, A. Beltran, S. Maestre

Abstract:

The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved.

Keywords: cooking process, ICP-MS, iodine, hake

Procedia PDF Downloads 141
1442 Liquid Waste Management in Cluster Development

Authors: Abheyjit Singh, Kulwant Singh

Abstract:

There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.

Keywords: collection, treatment, utilization, economic

Procedia PDF Downloads 76
1441 Halloysite Based Adsorbents for Removing Pollutants from Water Reservoirs

Authors: Agata Chelminska, Joanna Goscianska

Abstract:

The rapid growth of the world’s population and the resulting economic development have had an enormous influence on the environment. Multiple industrial processes generate huge amounts of wastewater containing dangerous substances, most of which are discharged into water bodies. These contaminants include pharmaceuticals and synthetic dyes. Regardless of the presence of wastewater treatment plants, a lot of pollutants cannot be easily eliminated by well-known technologies. Hence, more effective methods of removing resistant chemicals are being developed. Due to cost-effectiveness as well as the availability of a wide range of adsorbents, a large interest in the adsorption process as an alternative way of water purification has been observed. Clay minerals, e.g., halloysite, are one of the most researched natural adsorbents because of their availability, non-toxicity, high specific surface area, porosity, layered structure, and low cost. The negatively charged surface makes them ideal for binding cations and organic compounds. Halloysite can be subjected to modifications which enhance its adsorptive properties. The aim of the presented research was to apply pure and modified halloysite in removing particular pollutants (tetracycline, tartrazine, and phosphates) from aqueous solutions. Halloysite was modified with alcoholic and aqueous solutions of hexadecyltrimethylammonium bromide (CTAB) and urea in different concentrations and subsequently impregnated with lanthanum(III) chloride. Acidic and basic oxygen groups located on the surface of all materials were determined. Moreover, the adsorbents obtained were characterized by X-ray diffraction, low-temperature nitrogen adsorption, scanning, and transmission electron microscopy. The effectiveness of samples in tetracycline, tartrazine, and phosphates adsorption from the liquid phase was then studied in order to determine their potential application in eliminating contaminants from water reservoirs. Modifiers’ employment enabled obtaining materials that possess better adsorption properties, which makes them useful for removing various pollutants from water. Modifying the pure halloysite with CTAB and urea solutions and impregnating LaCl₃ led to the formation of acidic and basic oxygen functional groups on the surface. Their amount increases with an increasing percentage of lanthanum content. The acid-base properties of materials, as well as the type of functional groups that appear on their surface, have a significant influence on their sorption capacities towards antibiotics, dyes, and phosphate(V) anions. The selected contaminants adsorb onto the halloysite studied following the Langmuir type isotherm. The thermodynamic study indicated that the adsorption was a spontaneous and exothermic process. The adsorption equilibrium was rapidly attained after 120 min of contact time. Research showed that synthesized materials based on halloysite may be applied as adsorbents for antibiotics, organic dyes, and PO₄³- ions which are difficult to eliminate.

Keywords: adsorption processes, halloysite, minerals, water reservoirs pollutants

Procedia PDF Downloads 180
1440 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 186
1439 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 72
1438 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 77
1437 Ecological Study of Habitat Conditions and Distribution of Cistanche tubulosa (Rare Plant Species) in Pakpattan District, Pakistan

Authors: Shumaila Shakoor

Abstract:

C. tubulosa is a rare parasitic plant. It is found to be endangered and it acquires nutrition by penetrating roots deep in host roots. It has momentous potential to fulfill local and national health needs. This specie became endangered due to its parasitic mode of life and lack of awareness. Investigation of distribution and habitat conditions of C. tubulosa from District Pakpattan is the objective of this study. To explore its habitat conditions and community ecology phytosociological survey of C. tubulosa in different habitats i.e roadsides and graveyards was carried out. It was found that C. tubulosa occurs successfully in different habitats like graveyards and roadsides with specific neighboring species. Soil analysis was carried out by taking soil samples from seven sites. Soil was analyzed for pH, EC, soil texture, OM, N %age, Ca, Mg, P and K, which shows that soil of C. tubulosa is rich in all these nutrients.

Keywords: organic matter, potassium, phosphorus, magnesium

Procedia PDF Downloads 196
1436 Enhancement of Lignin Bio-Degradation through Homogenization with Dimethyl Sulfoxide

Authors: Ivana Brzonova, Asina Fnu, Alena Kubatova, Evguenii Kozliak, Yun Ji

Abstract:

Bio-decomposition of lignin by Basidiomycetes in the presence of dimethyl sulfoxide (DMSO) was investigated. The addition of 3-5 vol% DMSO to lignin aqueous media significantly increased the lignin solubility based on UV absorbance. After being dissolved in DMSO, the thermal evolution profile also changed significantly, yielding more high-MW organic carbon at the expense of recalcitrant elemental carbon. Medical fungi C. versicolor, G. lucidum and P. pulmonarius, were observed to grow on the lignin in media containing up to 15 vol. % DMSO. Further detailed product characterization by chromatographic methods corroborated these observations, as more low-MW phenolic products were observed with DMSO as a co-solvent. These results may be explained by the high solubility of lignin in DMSO; thus, the addition of DMSO to the medium increases the lignin availability for microorganisms. Some of these low-MW phenolic products host a big potential to be used in medicine. No significant inhibition of enzymatic activity (laccase, MnP, LiP) was observed by the addition of up to 3 vol% DMSO.

Keywords: basidiomycetes, bio-degradation, dimethyl sulfoxide, lignin

Procedia PDF Downloads 413
1435 Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study

Authors: Kulvinder Bajwa, Narsi R. Bishnoi

Abstract:

Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production.

Keywords: biofuel, Oleaginious bacteria, Rhodococcus opacus, FTIR, BBD, free fatty acids

Procedia PDF Downloads 136