Search results for: target gene database
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5551

Search results for: target gene database

4171 Assessment of Neurodevelopmental Needs in Duchenne Muscular Dystrophy

Authors: Mathula Thangarajh

Abstract:

Duchenne muscular dystrophy (DMD) is a severe form of X-linked muscular dystrophy caused by mutations in the dystrophin gene resulting in progressive skeletal muscle weakness. Boys with DMD also have significant cognitive disabilities. The intelligence quotient of boys with DMD, compared to peers, is approximately one standard deviation below average. Detailed neuropsychological testing has demonstrated that boys with DMD have a global developmental impairment, with verbal memory and visuospatial skills most significantly affected. Furthermore, the total brain volume and gray matter volume are lower in children with DMD compared to age-matched controls. These results are suggestive of a significant structural and functional compromise to the developing brain as a result of absent dystrophin protein expression. There is also some genetic evidence to suggest that mutations in the 3’ end of the DMD gene are associated with more severe neurocognitive problems. Our working hypothesis is that (i) boys with DMD do not make gains in neurodevelopmental skills compared to typically developing children and (ii) women carriers of DMD mutations may have subclinical cognitive deficits. We also hypothesize that there may be an intergenerational vulnerability of cognition, with boys of DMD-carrier mothers being more affected cognitively than boys of non-DMD-carrier mothers. The objectives of this study are: 1. Assess the neurodevelopment in boys with DMD at 4-time points and perform baseline neuroradiological assessment, 2. Assess cognition in biological mothers of DMD participants at baseline, 3. Assess possible correlation between DMD mutation and cognitive measures. This study also explores functional brain abnormalities in people with DMD by exploring how regional and global connectivity of the brain underlies executive function deficits in DMD. Such research can contribute to a better holistic understanding of the cognition alterations due to DMD and could potentially allow clinicians to create better-tailored treatment plans for the DMD population. There are four study visits for each participant (baseline, 2-4 weeks, 1 year, 18 months). At each visit, the participant completes the NIH Toolbox Cognition Battery, a validated psychometric measure that is recommended by NIH Common Data Elements for use in DMD. Visits 1, 3, and 4 also involve the administration of the BRIEF-2, ABAS-3, PROMIS/NeuroQoL, PedsQL Neuromuscular module 3.0, Draw a Clock Test, and an optional fMRI scan with the N-back matching task. We expect to enroll 52 children with DMD, 52 mothers of children with DMD, and 30 healthy control boys. This study began in 2020 during the height of the COVID-19 pandemic. Due to this, there were subsequent delays in recruitment because of travel restrictions. However, we have persevered and continued to recruit new participants for the study. We partnered with the Muscular Dystrophy Association (MDA) and helped advertise the study to interested families. Since then, we have had families from across the country contact us about their interest in the study. We plan to continue to enroll a diverse population of DMD participants to contribute toward a better understanding of Duchenne Muscular Dystrophy.

Keywords: neurology, Duchenne muscular dystrophy, muscular dystrophy, cognition, neurodevelopment, x-linked disorder, DMD, DMD gene

Procedia PDF Downloads 99
4170 Understanding the Motivations behind the Assassination of Turkish Armenian Journalist, Hrant Dink

Authors: Nusret Mesut Sahin

Abstract:

Hrant Dink, a prominent Turkish-Armenian journalist, and editor-in-chief of the bilingual Turkish-Armenian newspaper Agos was assassinated in Istanbul on January 19th, 2007 by a nationalist extremist, Ogun Samast. Dink had been voicing the atrocities against the Armenians between 1915 and 1922 during the Ottoman rule, and his comments on the issue appeared in the Turkish media many times before his assassination. It has been argued that the suffocating atmosphere created by the Turkish news media targeting Mr. Dink made him a target of an extremist Turkish juvenile. This study analyzes the media news to understand and explain why Hrant Dink became the target of a nationalist extremist. In this research, content analysis of news articles (N= 170) is conducted to identify whether there is a link between hate speech against Hrant Dink in the Turkish media and his assassination. The content of the newspaper articles is categorized and coded according to the hate language being used. The analysis suggested that Turkish media paved the way for Dink’s assassination. Hate speech against Hrant Dink on the media had risen gradually before the assassination. The study also found that the number of news stories covering hate speech and racist discourse against non-Muslim citizens of Turkey also increased dramatically before the assassination. Therefore, hate speech against minorities in media narratives and news reports should be monitored, and political figures or leaders of social groups who are targeted by some media outlets should be protected.

Keywords: Hrant Dink, assassination, Turkish Armenian journalist, media

Procedia PDF Downloads 159
4169 Targeting Mre11 Nuclease Overcomes Platinum Resistance and Induces Synthetic Lethality in Platinum Sensitive XRCC1 Deficient Epithelial Ovarian Cancers

Authors: Adel Alblihy, Reem Ali, Mashael Algethami, Ahmed Shoqafi, Michael S. Toss, Juliette Brownlie, Natalie J. Tatum, Ian Hickson, Paloma Ordonez Moran, Anna Grabowska, Jennie N. Jeyapalan, Nigel P. Mongan, Emad A. Rakha, Srinivasan Madhusudan

Abstract:

Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.

Keywords: MRE11; XRCC1, ovarian cancer, platinum sensitization, synthetic lethality

Procedia PDF Downloads 129
4168 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 321
4167 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 28
4166 Postmortem Genetic Testing to Sudden and Unexpected Deaths Using the Next Generation Sequencing

Authors: Eriko Ochiai, Fumiko Satoh, Keiko Miyashita, Yu Kakimoto, Motoki Osawa

Abstract:

Sudden and unexpected deaths from unknown causes occur in infants and youths. Recently, molecular links between a part of these deaths and several genetic diseases are examined in the postmortem. For instance, hereditary long QT syndrome and Burgada syndrome are occasionally fatal through critical ventricular tachyarrhythmia. There are a large number of target genes responsible for such diseases, the conventional analysis using the Sanger’s method has been laborious. In this report, we attempted to analyze sudden deaths comprehensively using the next generation sequencing (NGS) technique. Multiplex PCR to subject’s DNA was performed using Ion AmpliSeq Library Kits 2.0 and Ion AmpliSeq Inherited Disease Panel (Life Technologies). After the library was constructed by emulsion PCR, the amplicons were sequenced 500 flows on Ion Personal Genome Machine System (Life Technologies) according to the manufacture instruction. SNPs and indels were analyzed to the sequence reads that were mapped on hg19 of reference sequences. This project has been approved by the ethical committee of Tokai University School of Medicine. As a representative case, the molecular analysis to a 40 years old male who received a diagnosis of Brugada syndrome demonstrated a total of 584 SNPs or indels. Non-synonymous and frameshift nucleotide substitutions were selected in the coding region of heart disease related genes of ANK2, AKAP9, CACNA1C, DSC2, KCNQ1, MYLK, SCN1B, and STARD3. In particular, c.629T-C transition in exon 3 of the SCN1B gene, resulting in a leu210-to-pro (L210P) substitution is predicted “damaging” by the SIFT program. Because the mutation has not been reported, it was unclear if the substitution was pathogenic. Sudden death that failed in determining the cause of death constitutes one of the most important unsolved subjects in forensic pathology. The Ion AmpliSeq Inherited Disease Panel can amplify the exons of 328 genes at one time. We realized the difficulty in selection of the true source from a number of candidates, but postmortem genetic testing using NGS analysis deserves of a diagnostic to date. We now extend this analysis to SIDS suspected subjects and young sudden death victims.

Keywords: postmortem genetic testing, sudden death, SIDS, next generation sequencing

Procedia PDF Downloads 358
4165 Classification of Small Towns: Three Methodological Approaches and Their Results

Authors: Jerzy Banski

Abstract:

Small towns represent a key element of settlement structure and serve a number of important functions associated with the servicing of rural areas that surround them. It is in light of this that scientific studies have paid considerable attention to the functional structure of centers of this kind, as well as the relationships with both surrounding rural areas and other urban centers. But a preliminary to such research has typically involved attempts at classifying the urban centers themselves, with this also assisting with the planning and shaping of development policy on different spatial scales. The purpose of the work is to test out the methods underpinning three different classifications of small urban centers, as well as to offer a preliminary interpretation of the outcomes obtained. Research took in 722 settlement units in Poland, granted town rights and populated by fewer than 20,000 inhabitants. A morphologically-based classification making reference to the database of topographic objects as regards land cover within the administrative boundaries of towns and cities was carried out, and it proved possible to distinguish the categories of “housing-estate”, industrial and R&R towns, as well as towns characterized by dichotomy. Equally, a functional/morphological approach taken with the same database allowed for the identification – via an alternative method – of three main categories of small towns (i.e., the monofunctional, multifunctional or oligo functional), which could then be described in far greater detail. A third, multi-criterion classification made simultaneous reference to the conditioning of a structural, a location-related, and an administrative hierarchy-related nature, allowing for distinctions to be drawn between small towns in 9 different categories. The results obtained allow for multifaceted analysis and interpretation of the geographical differentiation characterizing the distribution of Poland’s urban centers across space in the country.

Keywords: small towns, classification, local planning, Poland

Procedia PDF Downloads 87
4164 Staphylococcal Enterotoxins Play an Important Role in Clinical Signs in Bovine Mastitis

Authors: Stéfani T. A. Dantas, Laura T. S. Takume, Bruna F. Rossi, Érika R. Bonsaglia, Ivana G. Castilho, José C. F. Pantoja, Ary Fernandes Júnior, Juliano L. Gonçalves, Marcos V. Santos, Rinaldo A. Mota, Vera L. M. Rall

Abstract:

Staphylococcus aureus is one of the main pathogens causing contagious bovine mastitis, being more frequently isolated from subclinical form, although the clinical form also occurs. Clinical mastitis cause visual signs, such as swelling, fever, hardening of the mammary gland, or any change in the characteristics of the milk. Considering the subclinical type, there are no visible signs in the animal nor changes in the milk. S. aureus has many important virulence factors for the establishment of its pathogenicity in animals, such as enterotoxins, which are also responsible for foodborne poisoning. Our objective is to perform a comparative analysis between 103 isolates of S. aureus, obtained from the milk of cows with clinical mastitis and 103 more, from subclinical type, in relation to the presence of these enterotoxins and verify if their presence plays an important role in the signs of illness. We will investigate all enterotoxins described till now, such as sea-see, seg-sez, sel26, sel 27, se01, and se02 (This study was approved by the Sao Paulo State University Animal Use Ethics Committee, No. 0136/2017). For the PCR assay, we used Illustra Bacteria Mini Spin Kit for bacterial DNA. At this moment, we have already tested sea-see, seg-ser, sew, and sex, and the results have already been submitted to Fisher Exact Probability Test or Chi-square Test. Considering the isolates obtained from clinical mastitis, the most frequent enterotoxins were selw (99%), selx (78%) and selh (50.5%), and sec, see, sej, sell, selp,and ser were absent. Among the subclinics, selw (82.5%) selm (15.5%) and selx (14.6%) were the most frequent, and sea-see, seg, sei-sel, sem-ser were absent. We have already observed statistically significant differences for seb, seg, seh, sei, selo, selu, selw and selx. Other interesting results were the low number of genes in each isolate from subclinical mastitis [0 genes: 14 (13.6%); 1 gene: 55 (53.4%); 2 genes: 33 (32%) or 3: 1 (0.97%)] compared to clinical isolates [1 gene: 5 (4.9%); 2 genes: 29 (28.1%); 3 genes: 38 (36.9%); 4 genes: 14 (13.6%); 5 genes: 5 (4.9%); 6 genes: 4 (3.9%); 7 genes: 5 (4.9%); 8 genes: 2 (1.9%) and 9 genes: 1 (1%)]. Based on these results, we can conclude that enterotoxins indeed play an important role in clinical signs in cattle with mastitis.

Keywords: mastitis, S. aureus, PCR, staphylococcal enterotoxin

Procedia PDF Downloads 113
4163 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
4162 Progress Towards Optimizing and Standardizing Fiducial Placement Geometry in Prostate, Renal, and Pancreatic Cancer

Authors: Shiva Naidoo, Kristena Yossef, Grimm Jimm, Mirza Wasique, Eric Kemmerer, Joshua Obuch, Anand Mahadevan

Abstract:

Background: Fiducial markers effectively enhance tumor target visibility prior to Stereotactic Body Radiation Therapy or Proton therapy. To streamline clinical practice, fiducial placement guidelines from a robotic radiosurgery vendor were examined with the goals of optimizing and standardizing feasible geometries for each treatment indication. Clinical examples of prostate, renal, and pancreatic cases are presented. Methods: Vendor guidelines (Accuray, Sunnyvale, Ca) suggest implantation of 4–6 fiducials at least 20 mm apart, with at least a 15-degree angular difference between fiducials, within 50 mm or less from the target centroid, to ensure that any potential fiducial motion (e.g., from respiration or abdominal/pelvic pressures) will mimic target motion. Also recommended is that all fiducials can be seen in 45-degree oblique views with no overlap to coincide with the robotic radiosurgery imaging planes. For the prostate, a standardized geometry that meets all these objectives is a 2 cm-by-2 cm square in the coronal plane. The transperineal implant of two pairs of preloaded tandem fiducials makes the 2 cm-by-2 cm square geometry clinically feasible. This technique may be applied for renal cancer, except repositioned in a sagittal plane, with the retroperitoneal placement of the fiducials into the tumor. Pancreatic fiducial placement via endoscopic ultrasound (EUS) is technically more challenging, as fiducial placement is operator-dependent, and lesion access may be limited by adjacent vasculature, tumor location, or restricted mobility of the EUS probe in the duodenum. Fluoroscopically assisted fiducial placement during EUS can help ensure fiducial markers are deployed with optimal geometry and visualization. Results: Among the first 22 fiducial cases on a newly installed robotic radiosurgery system, live x-ray images for all nine prostatic cases had excellent fiducial visualization at the treatment console. Renal and pancreatic fiducials were not as clearly visible due to difficult target access and smaller caliber insertion needle/fiducial usage. The geometry of the first prostate case was used to ensure accurate geometric marker placement for the remaining 8 cases. Initially, some of the renal and pancreatic fiducials were closer than the 20 mm recommendation, and interactive feedback with the proceduralists led to subsequent fiducials being too far to the edge of the tumor. Further feedback and discussion of all cases are being used to help guide standardized geometries and achieve ideal fiducial placement. Conclusion: The ideal tradeoffs of fiducial visibility versus the thinnest possible gauge needle to avoid complications needs to be systematically optimized among all patients, particularly in regards to body habitus. Multidisciplinary collaboration among proceduralists and radiation oncologists can lead to improved outcomes.

Keywords: fiducial, prostate cancer, renal cancer, pancreatic cancer, radiotherapy

Procedia PDF Downloads 93
4161 Evaluation of the Spatial Regulation of Hydrogen Sulphide Producing Enzymes in the Placenta during Labour

Authors: F. Saleh, F. Lyall, A. Abdulsid, L. Marks

Abstract:

Background: Labour in human is a complex biological process that involves interactions of neurological, hormonal and inflammatory pathways, with the placenta being a key regulator of these pathways. It is known that uterine contractions and labour pain cause physiological changes in gene expression in maternal and fetal blood, and in placenta during labour. Oxidative and inflammatory stress pathways are implicated in labour and they may cause alteration of placental gene expression. Additionally, in placental tissues, labour increases the expression of genes involved in placental oxidative stress, inflammatory cytokines, angiogenic regulators and apoptosis. Recently, Hydrogen Sulphide (H2S) has been considered as an endogenous gaseous mediator which promotes vasodilation and exhibits cytoprotective anti-inflammatory properties. The endogenous H2S is synthesised predominantly by two enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). As the H2S pathway has anti-oxidative and anti-inflammatory characteristics thus, we hypothesised that the expression of CBS and CSE in placental tissues would alter during labour. Methods: CBS and CSE expressions were examined in placentas using western blotting and RT-PCR in inner, middle and outer placental zones in placentas obtained from healthy non labouring women who delivered by caesarian section. These were compared with the equivalent zone of placentas obtained from women who had uncomplicated labour and delivered vaginally. Results: No differences in CBS and CSE mRNA or protein levels were found between the different sites within placentas in either the labour or non-labour group. There were no significant differences in either CBS or CSE expression between the two groups at the inner site and middle site. However, at the outer site there was a highly significant decrease in CBS protein expression in the labour group when compared to the non-labour group (p = 0.002). Conclusion: To the best of author’s knowledge, this is the first report to suggest that, CBS is expressed in a spatial manner within the human placenta. Further work is needed to clarify the precise function and mechanism of this spatial regulation although it is likely that inflammatory pathways regulation is a complex process in which this plays a role.

Keywords: anti-inflammatory, hydrogen sulphide, labour, oxidative stress

Procedia PDF Downloads 241
4160 Expression of Micro-RNA268 in Zinc Deficient Rice

Authors: Sobia Shafqat, Saeed Ahmad Qaisrani

Abstract:

MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.

Keywords: micro RNA268, zinc, rice, agronomic approach

Procedia PDF Downloads 61
4159 The Role of Artificial Intelligence in Criminal Procedure

Authors: Herke Csongor

Abstract:

The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.

Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment

Procedia PDF Downloads 38
4158 The Use of Water Resources Yield Model at Kleinfontein Dam

Authors: Lungile Maliba, O. I. Nkwonta, E Onyari

Abstract:

Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.

Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model

Procedia PDF Downloads 139
4157 Bionaut™: A Breakthrough Robotic Microdevice to Treat Non-Communicating Hydrocephalus in Both Adult and Pediatric Patients

Authors: Suehyun Cho, Darrell Harrington, Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Alex Kiselyov, Michael Shpigelmacher

Abstract:

Bionaut Labs, LLC is developing a minimally invasive robotic microdevice designed to treat non-communicating hydrocephalus in both adult and pediatric patients. The device utilizes biocompatible microsurgical particles (Bionaut™) that are specifically designed to safely and reliably perform accurate fenestration(s) in the 3rd ventricle, aqueduct of Sylvius, and/or trapped intraventricular cysts of the brain in order to re-establish normal cerebrospinal fluid flow dynamics and thereby balance and/or normalize intra/intercompartmental pressure. The Bionaut™ is navigated to the target via CSF or brain tissue in a minimally invasive fashion with precise control using real-time imaging. Upon reaching the pre-defined anatomical target, the external driver allows for directing the specific microsurgical action defined to achieve the surgical goal. Notable features of the proposed protocol are i) Bionaut™ access to the intraventricular target follows a clinically validated endoscopy trajectory which may not be feasible via ‘traditional’ rigid endoscopy: ii) the treatment is microsurgical, there are no foreign materials left behind post-procedure; iii) Bionaut™ is an untethered device that is navigated through the subarachnoid and intraventricular compartments of the brain, following pre-designated non-linear trajectories as determined by the safest anatomical and physiological path; iv) Overall protocol involves minimally invasive delivery and post-operational retrieval of the surgical Bionaut™. The approach is expected to be suitable to treat pediatric patients 0-12 months old as well as adult patients with obstructive hydrocephalus who fail traditional shunts or are eligible for endoscopy. Current progress, including platform optimization, Bionaut™ control, and real-time imaging and in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of ovine models, will be discussed.

Keywords: Bionaut™, cerebrospinal fluid, CSF, fenestration, hydrocephalus, micro-robot, microsurgery

Procedia PDF Downloads 170
4156 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase

Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He

Abstract:

Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.

Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification

Procedia PDF Downloads 311
4155 Investigating the Antimicrobial Activity of Essential Oil Derived from Pistacia atlantica Gum against Extensively Drug-Resistant Gram-Negative Acinetobacter baumannii

Authors: Zhala Ahmad, Zainab Lazim, Haider Hamzah

Abstract:

Bacterial resistance is a pressing global health issue, with multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) strains to pose a serious threat. In this context, researchers are investigating effective, safe, and affordable metabolites to combat these pathogens. This study focuses on gum essential oil (GEO) extracted from Pistacia atlantica and its activity and the mechanism of action against XDR Gram-negative Acinetobacter baumannii. GEO was extracted by hydrodistillation and analyzed using GC-MS. Eleven A. baumannii isolates were collected from the ward environment of Burn and Plastic Surgery Hospital in Al Sulaymaniyah City, Iraq. They were identified using the VITEK 2 system, 16S rRNA gene, and confirmed with the blaₒₓₐ₋₅₁ gene; A. baumannii ATCC 19606 was used as a reference strain. The isolates were identified as resistant to twelve different antibiotics spanning six distinct antibiotic classes while showing susceptibility to tetracycline and trimethoprim. Over 40 chemical constituents were detected in the gum's essential oils, with α-pinene being the most abundant. GEO was found to inhibit the growth of A. baumannii isolates; the minimum inhibitory concentration (MIC) of GEO was 2.5 µl/ml. GEO induced protein leakage, phosphate, and potassium ion efflux, distorted cell morphology, and cell death in the tested bacteria. GEO exhibited bacterial clearance and anti-adhesion activity using Band-Aids. This study's findings suggest that GEO could be used as a potential alternative treatment for infectious diseases caused by XRD pathogens, shedding further light on the importance of GEO in biomedical applications. Future studies must focus on generating clinically feasible sources of GEO for testing in small animal models before proceeding to human trials, ensuring safe and effective translation from the laboratory to the clinic.

Keywords: antibiotic resistance, Acinetobacter baumannii, essential oils, Pistacia atlantica, alpha-pinene

Procedia PDF Downloads 71
4154 Effects of Pterostilbene in Brown Adipose Tissue from Obese Rats

Authors: Leixuri Aguirre, Iñaki Milton-Laskibar, Elizabeth Hijona, Luis Bujanda, Agnes M. Rimando, Maria P. Portillo

Abstract:

Introduction: In recent years great attention has been paid by scientific community to phenolic compounds as active biomolecules naturally present in foodstuffs due to their beneficial effects on health. Pterostilbene is a resveratrol dimethylether derivative which shows higher biodisponibility. Objective. To analyze the effects of two doses of pterostilbene on several markers of thermogenic capacity in a model of genetic obesity, which shows reduced thermogenesis. Methods: The experiment was conducted with thirty Zucker (fa/fa) rats that were distributed in 3 experimental groups, the control group and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of Ucp1, Pgc-1α, Cpt1b, Pparα, Nfr1, Tfam and Cox-2 were assessed by RT-PCR, protein expression of UCP1 and GLUT4 by western blot and enzyme activity of carnitine palmitoyl transferase 1b and citrate synthase by spectrophotometry in interscapular brown adipose tissue (iBAT). Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: Pterostilbene did not change gene expression of Pgc-1α. However, significant increases were found in the expression of Ucp1, Pparα, Nfr-1 and Cox-2. Protein expression of UCP1 and GLUT4 was increased in animals treated with pterostilbene, as well as the activities of CPT-1b and CS. These effects were observed with both doses of pterostilbene, without differences between them. Conclusions: These results show that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the anti-obesity properties of these compound needs further research. Acknowledgments: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.

Keywords: brown adipose tissue, pterostilbene, thermogenesis, uncoupling protein 1

Procedia PDF Downloads 296
4153 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 351
4152 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
4151 Decision Support System for the Management of the Shandong Peninsula, China

Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle

Abstract:

A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.

Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling

Procedia PDF Downloads 195
4150 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 432
4149 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls

Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper

Abstract:

Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.

Keywords: patient safety, quality improvement, serious incidents, falls, clinical care

Procedia PDF Downloads 124
4148 Prevalence and Molecular Characterization of Extended-Spectrum–β Lactamase and Carbapenemase-Producing Enterobacterales from Tunisian Seafood

Authors: Mehdi Soula, Yosra Mani, Estelle Saras, Antoine Drapeau, Raoudha Grami, Mahjoub Aouni, Jean-Yves Madec, Marisa Haenni, Wejdene Mansour

Abstract:

Multi-resistance to antibiotics in gram-negative bacilli and particularly in enterobacteriaceae, has become frequent in hospitals in Tunisia. However, data on antibiotic resistant bacteria in aquatic products are scarce. The aims of this study are to estimate the proportion of ESBL- and carbapenemase-producing Enterobacterales in seafood (clams and fish) in Tunisia and to molecularly characterize the collected isolates. Two types of seafood were sampled in unrelated markets in four different regions in Tunisia (641 pieces of farmed fish and 1075 mediterranean clams divided into 215 pools, and each pool contained 5 pieces). Once purchased, all samples were incubated in tubes containing peptone salt broth for 24 to 48h at 37°C. After incubation, overnight cultures were isolated on selective MacConkey agar plates supplemented with either imipenem or cefotaxime, identified using API20E test strips (bioMérieux, Marcy-l’Étoile, France) and confirmed by Maldi-TOF MS. Antimicrobial susceptibility was determined by the disk diffusion method on Mueller-Hinton agar plates and results were interpreted according to CA-SFM 2021. ESBL-producing Enterobacterales were detected using the Double Disc Synergy Test (DDST). Carbapenem-resistance was detected using an ertapenem disk and was respectively confirmed using the ROSCO KPC/MBL and OXA-48 Confirm Kit (ROSCO Diagnostica, Taastrup, Denmark). DNA was extracted using a NucleoSpin Microbial DNA extraction kit (Macherey-Nagel, Hoerdt, France), according to the manufacturer’s instructions. Resistance genes were determined using the CGE online tools. The replicon content and plasmid formula were identified from the WGS data using PlasmidFinder 2.0.1 and pMLST 2.0. From farmed fishes, nine ESBL-producing strains (9/641, 1.4%) were isolated, which were identified as E. coli (n=6) and K. pneumoniae (n=3). Among the 215 pools of 5 clams analyzed, 18 ESBL-producing isolates were identified, including 14 E. coli and 4 K. pneumoniae. A low isolation rate of ESBL-producing Enterobacterales was detected 1.6% (18/1075) in clam pools. In fish, the ESBL phenotype was due to the presence of the blaCTX-M-15 gene in all nine isolates, but no carbapenemase gene was identified. In clams, the predominant ESBL phenotype was blaCTX-M-1 (n=6/18). blaCPE (NDM1, OXA48) was detected only in 3 isolates ‘K. pneumoniae isolates’. Replicon typing on the strains carring the ESBL and carbapenemase gene revelead that the major type plasmid carried ESBL were IncF (42.3%) [n=11/26]. In all, our results suggest that seafood can be a reservoir of multi-drug resistant bacteria, most probably of human origin but also by the selection pressure of antibiotic. Our findings raise concerns that seafood bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health.

Keywords: BLSE, carbapenemase, enterobacterales, tunisian seafood

Procedia PDF Downloads 108
4147 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
4146 Genotypic and Allelic Distribution of Polymorphic Variants of Gene SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) and Their Association to the Clinical Response to Metformin in Adult Pakistani T2DM Patients

Authors: Sadaf Moeez, Madiha Khalid, Zoya Khalid, Sania Shaheen, Sumbul Khalid

Abstract:

Background: Inter-individual variation in response to metformin, which has been considered as a first line therapy for T2DM treatment is considerable. In the current study, it was aimed to investigate the impact of two genetic variants Leu125Phe (rs77474263) and Gly64Asp (rs77630697) in gene SLC47A1 on the clinical efficacy of metformin in T2DM Pakistani patients. Methods: The study included 800 T2DM patients (400 metformin responders and 400 metformin non-responders) along with 400 ethnically matched healthy individuals. The genotypes were determined by allele-specific polymerase chain reaction. In-silico analysis was done to confirm the effect of the two SNPs on the structure of genes. Association was statistically determined using SPSS software. Results: Minor allele frequency for rs77474263 and rs77630697 was 0.13 and 0.12. For SLC47A1 rs77474263 the homozygotes of one mutant allele ‘T’ (CT) of rs77474263 variant were fewer in metformin responders than metformin non-responders (29.2% vs. 35.5 %). Likewise, the efficacy was further reduced (7.2% vs. 4.0 %) in homozygotes of two copies of ‘T’ allele (TT). Remarkably, T2DM cases with two copies of allele ‘C’ (CC) had 2.11 times more probability to respond towards metformin monotherapy. For SLC47A1 rs77630697 the homozygotes of one mutant allele ‘A’ (GA) of rs77630697 variant were fewer in metformin responders than metformin non-responders (33.5% vs. 43.0 %). Likewise, the efficacy was further reduced (8.5% vs. 4.5%) in homozygotes of two copies of ‘A’ allele (AA). Remarkably, T2DM cases with two copies of allele ‘G’ (GG) had 2.41 times more probability to respond towards metformin monotherapy. In-silico analysis revealed that these two variants affect the structure and stability of their corresponding proteins. Conclusion: The present data suggest that SLC47A1 Leu125Phe (rs77474263) and Gly64Asp (rs77630697) polymorphisms were associated with the therapeutic response of metformin in T2DM patients of Pakistan.

Keywords: diabetes, T2DM, SLC47A1, Pakistan, polymorphism

Procedia PDF Downloads 159
4145 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies

Authors: Rashmi Gupta

Abstract:

Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.

Keywords: attention, distractors, motivational salience, valence

Procedia PDF Downloads 220
4144 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells

Authors: Fadilah Aleanizy

Abstract:

Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.

Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli

Procedia PDF Downloads 409
4143 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 267
4142 Analysis of the Effect of Increased Self-Awareness on the Amount of Food Thrown Away

Authors: Agnieszka Dubiel, Artur Grabowski, Tomasz Przerywacz, Mateusz Roganowicz, Patrycja Zioty

Abstract:

Food waste is one of the most significant challenges humanity is facing nowadays. Every year, reports from global organizations show the scale of the phenomenon, although society's awareness is still insufficient. One-third of the food produced in the world is wasted at various points in the food supply chain. Wastes are present from the delivery through the food preparation and distribution to the end of the sale and consumption. The first step in understanding and resisting the phenomenon is a thorough analysis of the everyday behaviors of humanity. This concept is understood as finding the correlation between the type of food and the reason for throwing it out and wasting it. Those actions were identified as a critical step in the start of work to develop technology to prevent food waste. In this paper, the problem mentioned above was analyzed by focusing on the inhabitants of Central Europe, especially Poland, aged 20-30. This paper provides an insight into collecting data through dedicated software and an organized database. The proposed database contains information on the amount, type, and reasons for wasting food in households. A literature review supported the work to answer research questions, compare the situation in Poland with the problem analyzed in other countries, and find research gaps. The proposed article examines the cause of food waste and its quantity in detail. This review complements previous reviews by emphasizing social and economic innovation in Poland's food waste management. The paper recommends a course of action for future research on food waste management and prevention related to the handling and disposal of food, emphasizing households, i.e., the last link in the supply chain.

Keywords: food waste, food waste reduction, consumer food waste, human-food interaction

Procedia PDF Downloads 119