Search results for: locally linear embedding
2763 The Injection of a Freshly Manufactured Hyaluronan Fragment Promotes Healing of Chronic Wounds: A Clinical Study
Authors: Dylan Treger, Lujia Zhang, Xiaoxiao Jia, Jessica H. Hui, Munkh-Amgalan Gantumur, Mizhou Hui, Li Liu
Abstract:
Hyaluronic acid (HA) is involved in wound healing via inflammation, granulation, and re-epithelialization mechanisms. The poor physical properties of natural high-molecular-weight polymers limit their direct use in the medical field. In this clinical study, we investigated whether the local injection of a tissue-permeable 35 kDa HA fragment (HA35) could favor the healing process in patients with chronic wounds accompanied by neuropathic pain. The HA35 fragments were freshly manufactured by degradation of high-molecular-weight HA with bovine testis-derived hyaluronidase PH20. Twenty patients in this study had nonhealing wounds and wound-related pain for more than 3 months. Freshly produced HA35 was locally injected into healthy skin immediately surrounding chronic wounds once a day for 10 days. Wound-associated pain and the degree of wound healing were evaluated. The injection of HA35 relieved the pain associated with chronic wounds in 24 hours. HA35 treatment significantly promoted the healing of chronic wounds, including expanded fresh granulation tissue on the wounds; reduced darkness or redness, dryness, and damaged areas on the surface of the skin surrounding the wounds; and decreased the size of the wound area. It can be concluded that the topical injection of tissue-permeable HA35 around chronic wounds has great potential to promote wound healing.Keywords: 35 kDa hyaluronan fragment HA35, chronic wound, wound healing, tissue permeability
Procedia PDF Downloads 1662762 Production of Pour Point Depressant for Paraffinic Crude Oils
Authors: Mosaad Attia Elkasaby
Abstract:
The crude oil contains paraffines, aromatics, and asphaltenes in addition to some organic impurities, with increasing demands to reduce the cost of crude oil production, the uses of a pour point depressant is mandatory to maintain good flow rate. The wax materials cause many problems during production, storage, and transport, especially at low temperature, as these waxes tend, at low temperatures, to precipitate on the wall lines, thus leads to the high viscosity of crude oil and impede the flow rate, which represents an additional burden for crude oil pumping system from the place of production to the refinery. There are many ways to solve this problem, including, but not limited to, heat the crude and the use of organic solvents. But one of the most important disadvantages of these methods is the high economic cost. The aim of this innovation is to manufacture some polymeric materials (polymers based on aniline) that are processed locally that can be used as a pour point depressant of crude oil. For the first time, polymer based on aniline is modified and used with a number of organic solvents and tested with solvent (Styrene). It was found that the polymer based on aniline, when modified, had full solubility in styrene, unlike other organic solvent that was used in the past, such as chloroform and toluene. We also used a new solvent (PONA) that is obtained from the process of hydrotreating and separation of straight run naphtha to dissolve polymer based on aniline as a pour point depressant of crude oil. This innovative include studies conducted on highly paraffinic crude oil (C.O.1 and C.O.2). On using concentration (2500 ppm) of polymer based on aniline, the pour point of crude oil has decreased from +33 to - 9°C in case of crude oil (C.O.1) and from + 42 to – 6°C in case crude oil (C.O.2) at the same concentration.Keywords: PPD, aniline, paraffinic crude oils, polymers
Procedia PDF Downloads 932761 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy
Authors: Murtada Ahmed Oshi, Jin-Wook Yoo
Abstract:
Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes
Procedia PDF Downloads 1962760 Clinical Pharmacology Throughout the World: A View from Global Health
Authors: Ragy Raafat Gaber Attaalla
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health.Keywords: low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 722759 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Mozhdeh Khalili Kordabadi
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.
Procedia PDF Downloads 962758 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 1782757 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis
Authors: Saleem Z. Ramadan
Abstract:
In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life
Procedia PDF Downloads 5622756 Implementing Biogas Technology in Rural Areas of Limpopo: Analysis of Gawula, Mopani District in South Africa
Authors: Thilivhali E. Rasimphi, David Tinarwo
Abstract:
Access to energy is crucial in poverty alleviation, economic growth, education, and agricultural improvement. The best renewable energy source is one which is locally available, affordable, and can easily be used and managed by local communities. The usage of renewable energy technology has the potential to alleviate many of the current problems facing rural areas. To address energy poverty, biogas technology has become an important part of resolving such. This study, therefore, examines the performance of digesters in Gawula village; it also identifies the contributing factors to the adoption and use of the technology. Data was collected using an open-ended questionnaire from biogas users. To evaluate the performance of the digesters, a data envelopment analysis (DEA) non-parametric technique was used, and to identify key factors affecting adoption, a logit model was applied. The reviewed critical barriers to biogas development in the area seem to be a poor institutional framework, poor infrastructure, a lack of technical support, user training on maintenance and operation, and as such, the implemented plants have failed to make the desired impact. Thus most digesters were abandoned. To create awareness amongst rural communities, government involvement is key, and there is a need for national programs. Biogas technology does what few other renewable energy technologies do, which is to integrate waste management and energy. This creates a substantial opportunity for biogas generation and penetration. That is, a promising pathway towards achieving sustainable development through biogas technology.Keywords: domestic biogas technology, economic, sustainable, social, rural development
Procedia PDF Downloads 1402755 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 2472754 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy
Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni
Abstract:
This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.Keywords: deep seated gravitational slope deformation, Italy, landslide, numerical modeling
Procedia PDF Downloads 3652753 Comparative Settlement Analysis on the under of Embankment with Empirical Formulas and Settlement Plate Measurement for Reducing Building Crack around of Embankments
Authors: Safitri Nur Wulandari, M. Ivan Adi Perdana, Prathisto L. Panuntun Unggul, R. Dary Wira Mahadika
Abstract:
In road construction on the soft soil, we need a soil improvement method to improve the soil bearing capacity of the land base so that the soil can withstand the traffic loads. Most of the land in Indonesia has a soft soil, where soft soil is a type of clay that has the consistency of very soft to medium stiff, undrained shear strength, Cu <0:25 kg/cm2, or the estimated value of NSPT <5 blows/ft. This study focuses on the analysis of the effect on preloading load (embarkment) to the amount of settlement ratio on the under of embarkment that will impact on the building cracks around of embarkment. The method used in this research is a superposition method for embarkment distribution on 27 locations with undisturbed soil samples at some borehole point in Java and Kalimantan, Indonesia. Then correlating the results of settlement plate monitoring on the field with Asaoka method. The results of settlement plate monitoring taken from an embarkment of Ahmad Yani airport in Semarang on 32 points. Where the value of Cc (index compressible) soil data based on some laboratory test results, while the value of Cc is not tested obtained from empirical formula Ardhana and Mochtar, 1999. From this research, the results of the field monitoring showed almost the same results with an empirical formulation with the standard deviation of 4% where the formulation of the empirical results of this analysis obtained by linear formula. Value empirical linear formula is to determine the effect of compression heap area as high as 4,25 m is 3,1209x + y = 0.0026 for the slope of the embankment 1: 8 for the same analysis with an initial height of embankment on the field. Provided that at the edge of the embankment settlement worth is not equal to 0 but at a quarter of embankment has a settlement ratio average 0.951 and at the edge of embankment has a settlement ratio 0,049. The influence areas around of embankment are approximately 1 meter for slope 1:8 and 7 meters for slope 1:2. So, it can cause the building cracks, to build in sustainable development.Keywords: building cracks, influence area, settlement plate, soft soil, empirical formula, embankment
Procedia PDF Downloads 3442752 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 4192751 Reorientation of Anisotropic Particles in Free Liquid Microjets
Authors: Mathias Schlenk, Susanne Seibt, Sabine Rosenfeldt, Josef Breu, Stephan Foerster
Abstract:
Thin liquid jets on micrometer scale play an important role in processing such as in fiber fabrication, inkjet printing, but also for sample delivery in modern synchrotron X-ray devices. In all these cases the liquid jets contain solvents and dissolved materials such as polymers, nanoparticles, fibers pigments or proteins. As liquid flow in liquid jets differs significantly from flow in capillaries and microchannels, particle localization and orientation will also be different. This is of critical importance for applications, which depend on well-defined homogeneous particle and fiber distribution and orientation in liquid jets. Investigations of particle orientation in liquid microjets of diluted solutions have been rare, despite their importance. With the arise of micro-focused X-ray beams it has become possible to scan across samples with micrometer resolution to locally analyse structure and orientation of the samples. In the present work, we used this method to scan across liquid microjets to determine the local distribution and orientation of anisotropic particles. The compromise wormlike block copolymer micelles as an example of long flexible fibrous structures, hectorite materials as a model of extended nanosheet structures, and gold nanorods as an illustration of short stiff cylinders to comprise all relevant anisotropic geometries. We find that due to the different velocity profile in the liquid jet, which resembles plug flow, the orientation of the particles which was generated in the capillary is lost or changed into non-oriented or bi-axially orientations depending on the geometrical shape of the particle.Keywords: anisotropic particles, liquid microjets, reorientation, SAXS
Procedia PDF Downloads 3392750 Ethnopharmacological Survey of Medicinal Plants Used in Southwest Algeria to Treat Gastro-Intestinal Ailments
Authors: Karima Sekkoum Abdelkrim Cheriti, Leila Feguigui
Abstract:
Algeria has a large plant biodiversity accounting more than 4125 species (123 Families) and is endowed with resources of medicinal plants growing on various bioclimatic zones from subhumide to semi-arid and Saharan. On the other hand, the ethnopharmacology investigation remains the principal way to improve, evaluate, and finding bioactive substances derived from medicinal plants. In continuation of our works in Saharan ethpharmacopeae and phytochemistry of Saharan medicinal plants, we focus our attention on the importance of local ethnopharmacology especially to treat gastro-intestinal disorders in the south west of Algeria (El Baydh, Naama and Bechar region) as platform for bioactive substances discovery and further development. Our present investigation deals with an ethnopharmacological study on medicinal plants used for the treatment of gastro-intestinal disorders in the south west of Algeria. The study presents the uses of plants in local traditional herbal medicines, determines the homogeneity of informant traditional knowledge and the preferred medicinal plants used to treat gastro-intestinal disorders. The results indicated that Asteraceae and Lamiaceae are the most locally used families and medicines were prepared in the form of powder or infusion and used orally. Aerial parts were the most frequently used plant part. Thus, the results can be used as platform for bioactive substances discovery and further development especially for the preferred plant species used in the treatment of gastro-intestinal disorders.Keywords: ethnopharmacology, gastro-intestinal, phytochemical, South Algeria, Sahara, endemic species
Procedia PDF Downloads 2942749 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing
Authors: Neha Devi, P. K. Joshi
Abstract:
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis
Procedia PDF Downloads 1652748 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool
Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier
Abstract:
Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison
Procedia PDF Downloads 3842747 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice
Authors: Alok Pal Jain, Santram Lodhi
Abstract:
Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants
Procedia PDF Downloads 2952746 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1282745 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)
Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid
Abstract:
The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.Keywords: groundwater, nitrogen, mobility, speciation
Procedia PDF Downloads 2482744 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array
Authors: P. Behera, K. K. Singh, D. K. Saini, M. De
Abstract:
Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂
Procedia PDF Downloads 1432743 Performance Comparison of Non-Binary RA and QC-LDPC Codes
Abstract:
Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels.Keywords: non-binary RA codes, QC-LDPC codes, performance comparison, BP algorithm
Procedia PDF Downloads 3762742 Controller Design Using GA for SMC Systems
Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan
Abstract:
This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector
Procedia PDF Downloads 3642741 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 802740 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center
Authors: Ira Irawati, Muhammad Rangga Sururi
Abstract:
The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation
Procedia PDF Downloads 2592739 Modelling and Simulation of Aero-Elastic Vibrations Using System Dynamic Approach
Authors: Cosmas Pandit Pagwiwoko, Ammar Khaled Abdelaziz Abdelsamia
Abstract:
Flutter as a phenomenon of flow-induced and self-excited vibration has to be recognized considering its harmful effect on the structure especially in a stage of aircraft design. This phenomenon is also important for a wind energy harvester based on the fluttering surface due to its effective operational velocity range. This multi-physics occurrence can be presented by two governing equations in both fluid and structure simultaneously in respecting certain boundary conditions on the surface of the body. In this work, the equations are resolved separately by two distinct solvers, one-time step of each domain. The modelling and simulation of this flow-structure interaction in ANSYS show the effectiveness of this loosely coupled method in representing flutter phenomenon however the process is time-consuming for design purposes. Therefore, another technique using the same weak coupled aero-structure is proposed by using system dynamics approach. In this technique, the aerodynamic forces were calculated using singularity function for a range of frequencies and certain natural mode shapes are transformed into time domain by employing an approximation model of fraction rational function in Laplace variable. The representation of structure in a multi-degree-of-freedom coupled with a transfer function of aerodynamic forces can then be simulated in time domain on a block-diagram platform such as Simulink MATLAB. The dynamic response of flutter at certain velocity can be evaluated with another established flutter calculation in frequency domain k-method. In this method, a parameter of artificial structural damping is inserted in the equation of motion to assure the energy balance of flow and vibrating structure. The simulation in time domain is particularly interested as it enables to apply the structural non-linear factors accurately. Experimental tests on a fluttering airfoil in the wind tunnel are also conducted to validate the method.Keywords: flutter, flow-induced vibration, flow-structure interaction, non-linear structure
Procedia PDF Downloads 3152738 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions
Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu
Abstract:
Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge
Procedia PDF Downloads 4822737 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 4822736 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 702735 Continuous Adaptive Robust Control for Non-Linear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.Keywords: adaptive control, estimation, Fredholm integral, uncertain system
Procedia PDF Downloads 4832734 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 15