Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Search results for: Ni Wenli

8 Performance Comparison of Non-Binary RA and QC-LDPC Codes

Authors: Ni Wenli, He Jing


Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels.

Keywords: non-binary RA codes, QC-LDPC codes, performance comparison, BP algorithm

Procedia PDF Downloads 282
7 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory

Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming


To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.

Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model

Procedia PDF Downloads 292
6 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction

Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung


In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.

Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality

Procedia PDF Downloads 379
5 Design of the LCL Harmonic Filter with Grid-Connected Transformer

Authors: Tamara Egamnazarova, Minxiao Han, Wenli Yan


Large-scale integration based on power electronic systems gives rise to new challenges to modern power grids' power quality and stability. Power converters are the key elements of the power system that are actively involved in improving power quality and increase penetration of new energy sources to the power grid. Integration magnetic components allow reducing the overall size and even increasing energy efficiency. Additionally, the parasitic elements of the power transformer model investigated by the analytical approach. Moreover, the harmonic issues are critical, which are emerged due to the deployment of converters. Low pass LCL filters are usually deployed between the inverter and grid-connected transformers to mitigate harmonic pollution produced by the inverter. Passive filter, connected to the grid inverter, requires a small filter size and the harmonic limitations defined by the standard IEEE-519. A significant part of the overall cost and size of the power converter is the magnetic components. This paper illustrates a low-pass LCL harmonic filter design using the power transformer's parasitic parameters for grid-connected inverter by theoretical and practical analysis, simulated in MATLAB–Simulink.

Keywords: harmonics, integration, inverter, LCL filter

Procedia PDF Downloads 124
4 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu


Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 173
3 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu


Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 173
2 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao


As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 38
1 Proficiency Testing of English for Specific Academic Purpose: Using a Pilot Test in a Taiwanese University as an Example

Authors: Wenli Tsou, Jessica Wu


Courses of English for specific academic purposes (ESAP) have become popular for higher education in Taiwan; however, no standardized tests have been developed for evaluating learners’ English proficiency in individual designated fields. Assuming a learner’s proficiency in a specific academic area is built up with one’s general proficiency in English with specific knowledge and vocabulary in the content areas, an adequate ESAP proficiency test may be constructed by some selected test items related to the designated academic areas. In this study, through collaboration between a language testing institution and a university in Taiwan, three sets of ESAP tests, covering three disciplinary areas of business and the workplace, science and engineering, and health and medicine majors, were developed and administered to sophomore students (N=1704) who were enrolled in ESAP courses at a university in southern Taiwan. For this study, the courses were grouped into the above-mentioned three disciplines, and students took the specialized proficiency test based on the ESAP course they were taking. Because students were free to select which ESAP course to take, each course had both major and non-major students. Toward the end of the one-semester course, ending in January, 2015, each student took two tests, one of general English (General English Proficiency Test, or GEPT) and the other ESAP. Following each test, students filled out a survey, reporting their test taking experiences. After comparing students’ two test scores, it was found that business majors and health and medical students performed better in ESAP than the non-majors in the class, whereas science and engineering majors did about the same as their non-major counterparts. In addition, test takers with CERF B2 (upper intermediate) level or above performed well in both tests, while students who are below B2 did slightly better in ESAP. The findings suggest that students’ test performance have been enhanced by their specialist content and vocabulary knowledge. Furthermore, results of the survey show that the difficulty levels reported by students are consistent with their test performances. Based on the item analysis, the findings can be used to develop proficiency tests for specific disciplines and to identify ability indicators for college students in their designated fields.

Keywords: english for specific academic purposes (ESAP), general english proficiency test (GEPT), higher education, proficiency test

Procedia PDF Downloads 437