Search results for: ice binding proteins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1719

Search results for: ice binding proteins

399 Eco-Efficient Cementitious Materials for Construction Applications in Ireland

Authors: Eva Ujaczki, Rama Krishna Chinnam, Ronan Courtney, Syed A. M. Tofail, Lisa O'Donoghue

Abstract:

Concrete is the second most widely used material in the world and is made of cement, sand, and aggregates. Cement is a hydraulic binder which reacts with water to form a solid material. In the cement manufacturing process, the right mix of minerals from mined natural rocks, e.g., limestone is melted in a kiln at 1450 °C to form a new compound, clinker. In the final stage, the clinker is milled into a fine cement powder. The principal cement types manufactured in Ireland are: 1) CEM I – Portland cement; 2) CEM II/A – Portland-fly ash cement; 3) CEM II/A – Portland-limestone cement and 4) CEM III/A – Portland-round granulated blast furnace slag (GGBS). The production of eco-efficient, blended cement (CEM II, CEM III) reduces CO₂ emission and improves energy efficiency compared to traditional cements. Blended cements are produced locally in Ireland and more than 80% of produced cement is blended. These eco-efficient, blended cements are a relatively new class of construction materials and a kind of geopolymer binders. From a terminological point of view, geopolymer cement is a binding system that is able to harden at room temperature. Geopolymers do not require calcium-silicate-hydrate gel but utilize the polycondensation of SiO₂ and Al₂O₃ precursors to achieve a superior strength level. Geopolymer materials are usually synthesized using an aluminosilicate raw material and an activating solution which is mainly composed of NaOH or KOH and Na₂SiO₃. Cement is the essential ingredient in concrete which is vital for economic growth of countries. The challenge for the global cement industry is to reach to increasing demand at the same time recognize the need for sustainable usage of resources. Therefore, in this research, we investigated the potential for Irish wastes to be used in geopolymer cement type applications through a national stakeholder workshop with the Irish construction sector and relevant stakeholders. This paper aims at summarizing Irish stakeholder’s perspective for introducing new secondary raw materials, e.g., bauxite residue or increasing the fly ash addition into cement for eco-efficient cement production.

Keywords: eco-efficient, cement, geopolymer, blending

Procedia PDF Downloads 165
398 Effects of Different Processing Methods of Typha Grass on Feed Intake Milk Yield/Composition and Blood Parameters of Diry Cows

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Lawan, Aminu Maidala

Abstract:

Abstract 16 healthy lactating cows will be randomly selected for the trial and will be randomly divided in to 4 groups with 4 cows in each. They will be kept under similar management condition (conventional management system). Animals of relatively same weight and age will be used. After 11days for adaptation, feed intake and performance of the experimental animals will be determine. Milk sample will be collected at each milking in the morning and afternoon to determine; Milk yield, Milk fat percentage, Solid not fat percentage, Total solid percentage of milk. Cows dung will be observe to determine; Score 1 very loose watery stool, Score 2 semi solid with undigested raw material, Score 3 semi solid with less undigested raw material, Score 4 solid with very less undigested raw material, Score 5 good dung no undigested raw material. At the end of the experiment, blood samples will be analyzed for full blood counts and differentials {White Blood Cells (WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), Lymphocytes (LYM), Basophils, Eosinophils and Monocytes Proportion (MXD) and Neutrophils (NEUT)} using automated hematology analyzer. Serum samples will be analyzed for heat shock transcription factors, heat shock proteins and hormones (Serum glucocorticoid, prolactin and cortisol). Moreover, biochemical analysis will also be conducted to check for Total protein (TP), Albumen (ALB), Globulin (GBL), Total cholesterol (TCH), glucose (G), sodium (Na+), potassium (K+), chloride (Cl-) and pH. Keywords: Lactating cows, milk composition, dung score and blood parameters.

Keywords: Lactating cows , Milk yield , Dung score , Blood parameters

Procedia PDF Downloads 184
397 Muscle Neurotrophins Family Response to Resistance Exercise

Authors: Rasoul Eslami, Reza Gharakhanlou

Abstract:

NT-4/5 and TrkB have been proposed to be involved in the coordinated adaptations of the neuromuscular system to elevated level of activity. Despite the persistence of this neurotrophin and its receptor expression in adult skeletal muscle, little attention has been paid to the functional significance of this complex in the mature neuromuscular system. Therefore, the purpose of this research was to study the effect of one session of resistance exercise on mRNA expression of NT4/5 and TrkB proteins in slow and fast muscles of Wistar Rats. Male Wistar rats (10 mo of age, preparation of Pasteur Institute) were housed under similar living conditions in cages (in groups of four) at room temperature under a controlled light/dark (12-h) cycle with ad libitum access to food and water. A number of sixteen rats were randomly divided to two groups (resistance exercise (T) and control (C); n=8 for each group). The resistance training protocol consisted of climbing a 1-meter–long ladder, with a weight attached to a tail sleeve. Twenty-four hours following the main training session, rats of T and C groups were anaesthetized and the right soleus and flexor hallucis longus (FHL) muscles were removed under sterile conditions via an incision on the dorsolateral aspect of the hind limb. For NT-4/5 and TrkB expression, quantitative real time RT-PCR was used. SPSS software and independent-samples t-test were used for data analysis. The level of significance was set at P < 0.05. Data indicate that resistance training significantly (P<0.05) decreased mRNA expression of NT4/5 in soleus muscle. However, no significant alteration was detected in FHL muscle (P>0.05). Our results also indicate that no significant alterations were detected for TrkB mRNA expression in soleus and FHL muscles (P>0.05). Decrease in mRNA expression of NT4/5 in soleus muscle may be as result of post-translation regulation following resistance training. Also, non-alteration in TrkB mRNA expression was indicated in probable roll of P75 receptor.

Keywords: neurotrophin-4/5 (NT-4/5), TrkB receptor, resistance training, slow and fast muscles

Procedia PDF Downloads 444
396 Use of Locally Effective Microorganisms in Conjunction with Biochar to Remediate Mine-Impacted Soils

Authors: Thomas F. Ducey, Kristin M. Trippe, James A. Ippolito, Jeffrey M. Novak, Mark G. Johnson, Gilbert C. Sigua

Abstract:

The Oronogo-Duenweg mining belt –approximately 20 square miles around the Joplin, Missouri area– is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Over almost a century of mining (from 1848 to the late 1960’s), an estimated ten million tons of cadmium, lead, and zinc containing material have been deposited on approximately 9,000 acres. Sites that have undergone remediation, in which the O, A, and B horizons have been removed along with the lead contamination, the exposed C horizon remains incalcitrant to revegetation efforts. These sites also suffer from poor soil microbial activity, as measured by soil extracellular enzymatic assays, though 16S ribosomal ribonucleic acid (rRNA) indicates that microbial diversity is equal to sites that have avoided mine-related contamination. Soil analysis reveals low soil organic carbon, along with high levels of bio-available zinc, that reflect the poor soil fertility conditions and low microbial activity. Our study looked at the use of several materials to restore and remediate these sites, with the goal of improving soil health. The following materials, and their purposes for incorporation into the study, were as follows: manure-based biochar for the binding of zinc and other heavy metals responsible for phytotoxicity, locally sourced biosolids and compost to incorporate organic carbon into the depleted soils, effective microorganisms harvested from nearby pristine sites to provide a stable community for nutrient cycling in the newly composited 'soil material'. Our results indicate that all four materials used in conjunction result in the greatest benefit to these mine-impacted soils, based on above ground biomass, microbial biomass, and soil enzymatic activities.

Keywords: locally effective microorganisms, biochar, remediation, reclamation

Procedia PDF Downloads 217
395 Methylglyoxal Induced Glycoxidation of Human Low Density Lipoprotein: A Biophysical Perspective and Its Role in Diabetes and Periodontitis

Authors: Minhal Abidi, Moinuddin

Abstract:

Diabetes mellitus (DM) induced metabolic abnormalities causes oxidative stress which leads to the pathogenesis of complications associated with diabetes like retinopathy, nephropathy periodontitis etc. Combination of glycation and oxidation 'glycoxidation' occurs when oxidative reactions affect the early state of glycation products. Low density lipoprotein (LDL) is prone to glycoxidative attack by sugars and methylglyoxal (MGO) being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. Pro-inflammatory cytokines like IL1β and TNFα produced by the action of gram negative bacteria in periodontits (PD) can in turn lead to insulin resistance. This work discusses modifications to LDL as a result of glycoxidation. The changes in the protein molecule have been characterized by various physicochemical techniques and the immunogenicity of the modified molecules was also evaluated as they presented neo-epitopes. Binding of antibodies present in diabetes patients to the native and glycated LDL has been evaluated. Role of modified epitopes in the generation of antibodies in diabetes and periodontitis has been discussed. The structural perturbations induced in LDL were analyzed by UV–Vis, fluorescence, circular dichroism and FTIR spectroscopy, molecular docking studies, thermal denaturation studies, Thioflavin T assay, isothermal titration calorimetry, comet assay. MALDI-TOF, ketoamine moieties, carbonyl content and HMF content were also quantitated in native and glycated LDL. IL1β and TNFα levels were also measured in the type 2 DM and PD patients. We report increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analogue. The results substantiate that in hyperglycemic state MGO modification of LDL causes structural perturbations making the protein antigenic which could obstruct normal physiological functions and might contribute in the development of secondary complications in diabetic patients like periodontitis.

Keywords: advanced glycation end products, diabetes mellitus, glycation, glycoxidation, low density lipoprotein, periodontitis

Procedia PDF Downloads 191
394 The Effect of Addition of White Mulberry Fruits on the Antioxidant Activity of the New Developed Bioactive Bread

Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata, Korczak Józef

Abstract:

Cereal products, including mainly bread is a staple food known from the beginning of history throughout the world. It is now believed that there is no replacement of the basic food. Bread, due to the high content of starch is the energy source for the proper functioning of our body. It also contains proteins, fats, vitamins, especially of the B group and vitamin E, a number of minerals, and fiber. The aim of the study was to evaluate the antioxidant activity of new developed bread premixes with mulberry fruits for people with anemia, diabetes, obesity and cardiovascular disease. From the finished product-bread, aqueous and methanol extracts was prepared, which in next step were analyzed to assess the activity of the radical DPPH test, ABTS, chelating activity, the ability to reduce metals. Extracts were prepared from bread were acquired with premixes directly after production and stored for three months. The resulting trial breads effect by different mechanisms of antioxidant. They showed the ability to scavenge radicals ABTS and DPPH and chelating activity. Methanol extracts showed significantly greater antioxidant activity in comparison with aqueous extracts, and the largest effect was estimated for sample of bread for anemia, diabetes and cardiovascular disease. The greatest ability to scavenging ABTS radicals showed breads for anemia, diabetes and cardiovascular disease, while smaller for anemia and control sample. It was shown that the methanol extracts of the breads samples showed no ability to chelate iron (II). These properties are observed only in the aqueous extracts. The greatest ability attempt had anemia while the lowest control sample. Financial supported by the UE Project no POIG 01.01.02-00-061/09.

Keywords: morus alba, antioxidant activity, free radicals, polyphenols

Procedia PDF Downloads 311
393 Relationship of Oxidative Stress to Elevated Homocysteine and DNA Damage in Coronary Artery Disease Patients

Authors: Shazia Anwer Bukhari, Madiha Javeed Ghani, Muhammad Ibrahim Rajoka

Abstract:

Objective: Biochemical, environmental, physical and genetic factors have a strong effect on the development of coronary disease (CAD). Plasma homocysteine (Hcy) level and DNA damage play a pivotal role in its development and progression. The aim of this study was to investigate the predictive strength of an oxidative stress, clinical biomarkers and total antioxidant status (TAS) in CAD patients to find the correlation of homocysteine, TOS and oxidative DNA damage with other clinical parameters. Methods: Sixty confirmed patients with CAD and 60 healthy individuals as control were included in this study. Different clinical and laboratory parameters were studied in blood samples obtained from patients and control subjects using commercially available biochemical kits and statistical software Results: As compared to healthy individuals, CAD patients had significantly higher concentrations of indices of oxidative stress: homocysteine (P=0.0001), total oxidative stress (TOS) (P=0.0001), serum cholesterol (P=0.04), low density lipoprotein cholesterol (LDL) (P=0.01), high density lipoprotein-cholesterol (HDL) (P=0.0001), and malondialdehyde (MDA) (P=0.001) than those of healthy individuals. Plasma homocysteine level and oxidative DNA damage were positively correlated with cholesterol, triglycerides, systolic blood pressure, urea, total protein and albumin (P values= 0.05). Both Hcy and oxidative DNA damage were negatively correlated with TAS and proteins. Conclusion: Coronary artery disease patients had a significant increase in homocysteine level and DNA damage due to increased oxidative stress. In conclusion, our study shows a significantly increase in lipid peroxidation, TOS, homocysteine and DNA damage in the erythrocytes of patients with CAD. A significant decrease level of HDL-C and TAS was observed only in CAD patients. Therefore these biomarkers may be useful diagnosis of patients with CAD and play an important role in the pathogenesis of CAD.

Keywords: antioxidants, coronary artery disease, DNA damage, homocysteine, oxidative stress, malondialdehyde, 8-Hydroxy-2’deoxyguanosine

Procedia PDF Downloads 485
392 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 429
391 Cytolethal Distending Toxins in Intestinal and Extraintestinal E. coli

Authors: Katarína Čurová, Leonard Siegfried, Radka Vargová, Marta Kmeťová, Vladimír Hrabovský

Abstract:

Introduction: Cytolethal distending toxins (CDTs) represent intracellular acting proteins which interfere with cell cycle of eukaryotic cells. They are produced by Gram-negative bacteria with afinity to mucocutaneous surfaces and could play a role in the pathogenesis of various diseases. CDTs induce DNA damage probably through DNAse activity, which causes cell cycle arrest and leads to further changes (cell distension and death, apoptosis) depending on the cell type. Five subtypes of CDT (I to V) were reported in E. coli. Methods: We examined 252 E. coli strains belonging to four different groups. Of these strains, 57 were isolated from patients with diarrhea, 65 from patients with urinary tract infections (UTI), 65 from patients with sepsis and 65 from patients with other extraintestinal infections (mostly surgical wounds, decubitus ulcers and respiratory tract infections). Identification of these strains was performed by MALDI-TOF analysis and detection of genes encoding CDTs and determination of the phylogenetic group was performed by PCR. Results: In this study, we detected presence of cdt genes in 11 of 252 E. coli strains tested (4,4 %). Four cdt positive E. coli strains were confirmed in group of UTI (6,15 %), three cdt positive E. coli strains in groups of diarrhea (5,3 %) and other extraintestinal infections (4,6 %). The lowest incidence, one cdt positive E. coli strain, was observed in group of sepsis (1,5 %). All cdt positive E. coli strains belonged to phylogenetic group B2. Conclusion: CDT-producing E. coli are isolated in a low percentage from patients with intestinal and extraintestinal infections, including sepsis and our results correspond with these studies. A weak prevalence of cdt genes suggests that CDTs are not major virulence factors but in combination with other virulence factors may increase virulence potential of E. coli. We suppose that all 11 cdt positive E. coli strains represent real pathogens because they belong to the phylogenetic group B2 which is pathogenic lineage for bacteria E. coli.

Keywords: cytolethal distending toxin, E. coli, phylogenetic group, extraintestinal infection, diarrhea

Procedia PDF Downloads 350
390 Tissue-Specific Distribution of Cytochrome P450 1A1 and 3A in Rainbow Trout (Oncorhynchus mykiss)

Authors: Viktoriia Burkina, Vladimir Zlabek, Galia Zamaratskaia

Abstract:

Cytochromes P450 (CYP) are important family of enzymes in Phase I metabolism. Environmental pollutants often act as inducers of the gene expression and activities CYP1A1 and CYP3A-like isoforms in fish. The activities are generally measured in the fish liver or gills, and less is known about tissue distribution of expression. In present study, the CYP1A1 and CYP3A-like activities were measured in rainbow trout liver, gill, intestine, heart, brain and gonads. The activities of CYP1A1 and CYP3A-like proteins were estimated as the rates of 7-ethoxyresorufin-O-deethylation (EROD) and benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation (BFCOD), respectively. The CYP1A1 and CYP3A-like activities were detectable in all investigated fish tissues, with the highest activity in hepatic tissue followed by heart > brain > gill > intestine > gonads. To confirm the presence of CYP1A1 in different tissues, EROD activity was measured in presence of the selective inhibitors ellipticine (CYP1A1), ketoconazole (CYP3A), 8-methoxypsoralen (human CYP2A) and diallyl sulphide (CYP2E1). It was found that ellipticine, ketoconazole and 8-methoxypsoralen inhibited hepatic EROD activity by 88-98%. Ellipticine inhibited gill, intestine, and gonad EROD activity by 50%. In conclusion, EROD and BFCOD activities were detected in rainbow trout liver, gill, intestine, heart, brain and gonads. Further studies are needed to fully identify all CYP450 isoforms responsible for these activities. Acknowledgement: The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic - projects „CENAKVA “(No. CZ.1.05/2.1.00/01.0024), “CENAKVA Center Development “(No. CZ.1.05/2.1.00/19.0380), “CENAKVA II “(No. LO1205 under the NPU I program), and "Development of USB - International mobility (No. CZ.02.2.69/0.0/0.0/16_027/0008364).

Keywords: BFCOD, EROD, fish, phase I metabolism, selective inhibitors

Procedia PDF Downloads 151
389 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites

Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso

Abstract:

The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.

Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization

Procedia PDF Downloads 150
388 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 108
387 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death

Authors: Benjaporn Buranrat, Nootchanat Mairuae

Abstract:

Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.

Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death

Procedia PDF Downloads 211
386 Ectoine: A Compatible Solute in Radio-Halophilic Stenotrophomonas sp. WMA-LM19 Strain to Prevent Ultraviolet-Induced Protein Damage

Authors: Wasim Sajjad, Manzoor Ahmad, Sundas Qadir, Muhammad Rafiq, Fariha Hasan, Richard Tehan, Kerry L. McPhail, Aamer Ali Shah

Abstract:

Aim: This study aims to investigate the possible radiation protective role of a compatible solute in the tolerance of radio-halophilic bacterium against stresses, like desiccation and exposure to ionizing radiation. Methods and Results: Nine different radio-resistant bacteria were isolated from desert soil, where strain WMA-LM19 was chosen for detailed studies on the basis of its high tolerance for ultraviolet radiation among all these isolates. 16S rRNA gene sequencing indicated that the bacterium was closely related to Stenotrophomonas sp. (KT008383). A bacterial milking strategy was applied for extraction of intracellular compatible solutes in 70% (v/v) ethanol, which were purified by high-performance liquid chromatography (HPLC). The compound was characterized as ectoine by 1H and 13C nuclear magnetic resonance (NMR), and mass spectrometry (MS). Ectoine demonstrated more efficient preventive activity (54.80%) to erythrocyte membranes and also inhibited oxidative damage to proteins and lipids in comparison to the standard ascorbic acid. Furthermore, a high level of ectoine-mediated protection of bovine serum albumin against ionizing radiation (1500-2000 Jm-2) was observed, as indicated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Conclusion: The results indicated that ectoine can be used as a potential mitigator and radio-protective agent to overcome radiation- and salinity-mediated oxidative damage in extreme environments. Significance and Impact of the Study: This study shows that ectoine from radio-halophiles can be used as a potential source in topical creams as sunscreen. The investigation of ectoine as UV protectant also changes the prospective that radiation resistance is specific only to molecular adaptation.

Keywords: ectoine, anti-oxidant, stenotrophomonas sp., ultraviolet radiation

Procedia PDF Downloads 209
385 In vitro Evaluation of Prebiotic Potential of Wheat Germ

Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado

Abstract:

Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.

Keywords: by-products, functional ingredients, prebiotic potential, wheat germ

Procedia PDF Downloads 487
384 Design of New Baby Food Product Using Whey

Authors: Henri El Zakhem, Anthony Dahdah, Lara Frangieh, Jessica Koura

Abstract:

Nowadays, the removal of whey produced in the dairy processes has been the most important problem in the dairy industry. Every year, about 47% of the 115 million tons of whey produced world-wide are disposed in the environment. Whey is a nutritious liquid, containing whey proteins (β-lactoglobulin, α-lactalbumin, immunoglobulin-G, proteose pepton), lactose, vitamins (B5, B2, C, and B6), minerals (Calcium, Magnesium, Phosphorous, Potassium, Chloride, and Sodium), and trace elements (Zinc, Iron, Iodine, and Copper). The first objective was to increase the economical and commercial value of whey which is considered as by-product. The second objective of this study was to formulate a new baby food with good nutritional, sensory and storage properties and acceptable to consumers using the cheese whey. The creation of the new product must pass through the following stages: idea stage, development stage which includes the business planning and the product development prototype, packaging stage, production stage, test marketing stage, quality control/sanitation. Three types of whey-based food were selected and prepared by mixing whey and apple, whey and banana as well as whey, apple, and banana.To compile with the recommended dietary allowances (RDA) and adequate intakes (AI) for vitamins and minerals, each sample is formed from 114g of sliced and smashed fruits mixed with 8 mL of whey. Mixtures are heated to 72oC for 15 seconds, and filled in pasteurized jars. Jars were conserved at 4oC. Following the experimental part, sensory evaluation made by an experienced panel took place. Hedonic tests results show that the mixture of whey, apple, and banana has the most delicious and sweetness taste followed by the mixture of whey and banana, and finally the mixture of whey and apple. This study was concluded with a managerial and engineering study that reveals that the project is economically profitable to be executed in Lebanon.

Keywords: baby food, by-product, cheese whey, formulation

Procedia PDF Downloads 275
383 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 468
382 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases

Authors: Jeena Gupta

Abstract:

In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.

Keywords: epigenetics, spices, phytochemicals, fenchone

Procedia PDF Downloads 158
381 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation

Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin

Abstract:

A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.

Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic

Procedia PDF Downloads 292
380 Design and Development of Bioactive a-Hydroxy Carboxylate Group Modified MnFe₂O₄ Nanoparticle: Comparative Fluorescence Study, Magnetism and DNA Nuclease Activity

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Three new α-hydroxy carboxylate group functionalized MnFe₂O₄ nanoparticles (NPs) have been developed to explore the microscopic origin of ligand modified fluorescence and magnetic properties of nearly monodispersed MnFe₂O₄ NPs. The surface functionalization has been carried out with three small organic ligands (tartrate, malate, and citrate) having different number of α-hydroxy carboxylate functional group along with steric effect. Detailed study unveils that α-hydroxy carboxylate moiety of the ligands plays key role to generate intrinsic fluorescence in functionalized MnFe₂O₄ NPs through the activation of ligand to metal charge transfer transitions, associated with ligand-Mn²⁺/Fe³⁺ interactions along with d-d transition corresponding to d-orbital energy level splitting of Fe³⁺ ions on NP surface. Further, MnFe₂O₄ NPs show a maximum 140.88% increase in coercivity and 97.95% decrease in magnetization compared to its bare one upon functionalization. The ligands that induce smallest crystal field splitting of d-orbital energy level of transition metal ions are found to result in strongest ferromagnetic activation of the NPs. Finally, our developed tartrate functionalized MnFe₂O₄ (T-MnFe₂O₄) NPs have been utilized for studying DNA binding interaction and nuclease activity for stimulating their beneficial activities toward diverse biomedical applications. The spectroscopic measurements indicate that T-MnFe₂O₄ NPs bind calf thymus DNA by intercalative mode. The ability of T-MnFe₂O₄ NPs to induce DNA cleavage was studied by gel electrophoresis technique where the complex is found to promote the cleavage of pBR322 plasmid DNA from the super coiled form I to linear coiled form II and nicked coiled form III with good efficiency. This may be taken into account for designing new biomolecular detection agents and anti-cancer drug which can open up a new door toward diverse non-invasive biomedical applications.

Keywords: MnFe₂O₄ nanoparticle, α-hydroxy carboxylic acid, comparative fluorescence, magnetism study, DNA interaction, nuclease activity

Procedia PDF Downloads 139
379 Brain Atrophy in Alzheimer's Patients

Authors: Tansa Nisan Gunerhan

Abstract:

Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.

Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage

Procedia PDF Downloads 95
378 Juxtaposing Constitutionalism and Democratic Process in Nigeria Vis a Vis the South African Perspective

Authors: Onyinyechi Lilian Uche

Abstract:

Limiting arbitrariness and political power in governance is expressed in the concept of constitutionalism. Constitutionalism acknowledges the necessity for government but insists upon a limitation being placed upon its powers. It is therefore clear that the essence of constitutionalism is obviation of arbitrariness in governance and maximisation of liberty with adequate and expedient restraint on government. The doctrine of separation of powers accompanied by a system of checks and balances in Nigeria like many other African countries is marked by elements of ‘personal government’ and this has raised questions about whether the apparent separation of powers provided for in the Nigerian Constitution is not just a euphemism for the hegemony of the executive over the other two arms of government; the legislature and the judiciary. Another question raised in the article is whether the doctrine is merely an abstract philosophical inheritance that lacks both content and relevance to the realities of the country and region today? The current happenings in Nigeria and most African countries such as the flagrant disregard of court orders by the Executive, indicate clearly that the concept constitutionalism ordinarily goes beyond mere form and strikes at the substance of a constitution. It, therefore, involves a consideration of whether there are provisions in the constitution which limit arbitrariness in the exercise of political powers by providing checks and balances upon such exercise. These questions underscore the need for Africa to craft its own understanding of the separation of powers between the arms of government in furtherance of good governance as it has been seen that it is possible to have a constitution in place which may just be a mere statement of unenforceable ‘rights’ or may be bereft of provisions guaranteeing liberty or adequate and necessary restraint on exercise of government. This paper seeks to expatiate on the importance of the nexus between constitutionalism and democratic process and a juxtaposition of practices between Nigeria and South Africa. The article notes that an abstract analysis of constitutionalism without recourse to the democratic process is meaningless and also analyses the structure of government of some selected African countries. These are examined the extent to which the doctrine operates within the arms of government and concludes that it should not just be regarded as a general constitutional principle but made rigid or perhaps effective and binding through law and institutional reforms.

Keywords: checks and balances, constitutionalism, democratic process, separation of power

Procedia PDF Downloads 125
377 Adsorptive Membrane for Hemodialysis: Potential, Future Prospection and Limitation of MOF as Nanofillers

Authors: Musawira Iftikhar

Abstract:

The field of membrane materials is the most dynamic due to the constantly evolving requirements advancement of materials, to address challenges such as biocompatibility, protein-bound uremic toxins, blood coagulation, auto-immune responses, oxidative stress, and poor clearance of uremic toxins. Hemodialysis is a membrane filtration processes that is currently necessary for daily living of the patients with ESRD. Tens of millions of people with ESRD have benefited from hemodialysis over the past 60–70 years, both in terms of safeguarding life and a longer lifespan. Beyond challenges associated with the efficiency and separative properties of the membranes, ensuring hemocompatibility, or the safe circulation of blood outside the body for four hours every two days, remains a persistent challenge. This review explores the ongoing field of metal–Organic Frameworks (MOFs) and their applications in hemodialysis, offering a comprehensive examination of various MOFs employed to address challenges inherent in traditional hemodialysis methodologies. this This review included includes the experimental work done with various MOFs as a filler such as UiO-66, HKUST-1, MIL-101, and ZIF-8, which together lead to improved adsorption capacities for a range of uremic toxins and proteins. Furthermore, this review highlights how effectively MOF-based hemodialysis membranes remove a variety of uremic toxins, including p-cresol, urea, creatinine, and indoxyl sulfate and potential filler choices for the future. Future research efforts should focus on refining synthesis techniques, enhancing toxin selectivity, and investigating the long-term durability of MOF-based membranes. With these considerations, MOFs emerge as transformative materials in the quest to develop advanced and efficient hemodialysis technologies, holding the promise to significantly enhance patient outcomes and redefine the landscape of renal therapy.

Keywords: membrane, hemodailysis, metal organic frameworks, seperation, protein adsorbtion

Procedia PDF Downloads 56
376 Q Eqchi Mayan Piper and Cissampelos Species Alter Reporter Genes and Endogenous Genes Expression in Mc-7 Cells

Authors: Sheila M. Wicks, Gail Mahady, Udesh Patel, Joanna Michel, Armando Caceres

Abstract:

Introduction: The genus piperaceae contains approximately 1000 species of herbs scrubs small trees and hanging vines distributed in both hemispheres. During our ethno medical work in Guatemala of the 27 plant families documented for us e by the Qeqchi Maya for reproductive disorders the most prominent were the Piperaceae (15%) and Menispermiaceae. Our Previous work showed that extracts from form Piper and Cissampelos species bound to both and progesterone and the estrogen receptors. In this work active extracts from Piper aeruginosibaccum Trelease, P auritum, P tuerckheimii and Cissampels tropaeolifolia were tested in functionalized cell based assays including a SEAP reporter gene and by qPCR of ER-responsive gene expression in MCF-7cells. In the reporter gene assay P aeruginosibaccum was estrogenic and enhanced E2 EFFECTS IN MCF-7 CELLS. P. tuerckheimi was not estrogenic alone but significantly enhanced the effects of E2 on SEAP reporter gene expression. Both altered mRNA expression of E2 responsive genes in MCF-7. Methods: this is collaborative project between University of Illinois at Chicago and University of San Carlos Guatemala City. 144 spices of plants were collected in Guatemala of which 57 used to treat a variety of women's reproductive health. The Genus Piperaraceae contains approximately 1000 species of herbs scrubs and small trees. Active extracts of the plants were tested in functionalized in cell-based bioassays including SEAP reporter genes. Results demonstrated altered mRNA expression of E2 responsive genes in MC-7 cells plants were collected in Guatemala of which 57 used. Conclusion of the 5 plants tested all were shown to contain components of binding to estrogenic receptor to a greater or lesser degree. These effects support the use of QEqchi Maya women in Guatemala for reproductive.

Keywords: reporter genes, MC7, guatemala piperaceae, reproductive health

Procedia PDF Downloads 247
375 Early Transcriptome Responses to Piscine orthoreovirus-1 in Atlantic salmon Erythrocytes Compared to Salmonid Kidney Cell Lines

Authors: Thomais Tsoulia, Arvind Y. M. Sundaram, Stine Braaen, Øyvind Haugland, Espen Rimstad, Øystein Wessel, Maria K. Dahle

Abstract:

Fish red blood cells (RBC) are nucleated, and in addition to their function in gas exchange, they have been characterized as mediators of immune responses. Salmonid RBC are the major target cells of Piscineorthoreovirus (PRV), a virus associated with heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. The activation of antiviral response genesin RBChas previously been described in ex vivo and in vivo PRV-infection models, but not explored in the initial virus encounter phase. In the present study, mRNA transcriptome responses were explored in erythrocytes from individual fish, kept ex vivo, and exposed to purified PRV for 24 hours. The responses were compared to responses in macrophage-like salmon head kidney (SHK-1) and endothelial-like Atlantic salmon kidney (ASK) cells, none of which support PRV replication. The comparative analysis showed that the antiviral response to PRV was strongest in the SHK-1 cells, with a set of 80 significantly induced genes (≥ 2-fold upregulation). In RBC, 46 genes were significantly upregulated, while ASK cells were not significantly responsive. In particular, the transcriptome analysis of RBC revealed that PRV significantly induced interferon regulatory factor 1 (IRF1) and interferon-induced protein with tetratricopeptide repeats 5-like (IFIT9). However, several interferon-regulated antiviral genes which have previously been reported upregulated in PRV infected RBC in vivo (myxovirus resistance (Mx), interferon-stimulated gene 15 (ISG15), toll-like receptor 3 (TLR3)), were not significantly induced after 24h of virus stimulation. In contrast to RBC, these antiviral response genes were significantly upregulated in SHK-1. These results confirm that RBC are involved in the innate immune response to viruses, but with a delayed antiviral response compared to SHK-1. A notable difference is that interferon regulatory factor 1 (IRF-1) is the most strongly induced gene in RBC, but not among the significantly induced genes in SHK-1. Putative differences in the binding, recognition, and response to PRV, and any link to effects on the ability of PRV to replicate remains to be explored.

Keywords: antiviral responses, atlantic salmon, piscine orthoreovirus-1, red blood cells, RNA-seq

Procedia PDF Downloads 189
374 Synthesis and Characterization of Anti-Psychotic Drugs Based DNA Aptamers

Authors: Shringika Soni, Utkarsh Jain, Nidhi Chauhan

Abstract:

Aptamers are recently discovered ~80-100 bp long artificial oligonucleotides that not only demonstrated their applications in therapeutics; it is tremendously used in diagnostic and sensing application to detect different biomarkers and drugs. Synthesizing aptamers for proteins or genomic template is comparatively feasible in laboratory, but drugs or other chemical target based aptamers require major specification and proper optimization and validation. One has to optimize all selection, amplification, and characterization steps of the end product, which is extremely time-consuming. Therefore, we performed asymmetric PCR (polymerase chain reaction) for random oligonucleotides pool synthesis, and further use them in Systematic evolution of ligands by exponential enrichment (SELEX) for anti-psychotic drugs based aptamers synthesis. Anti-psychotic drugs are major tranquilizers to control psychosis for proper cognitive functions. Though their low medical use, their misuse may lead to severe medical condition as addiction and can promote crime in social and economical impact. In this work, we have approached the in-vitro SELEX method for ssDNA synthesis for anti-psychotic drugs (in this case ‘target’) based aptamer synthesis. The study was performed in three stages, where first stage included synthesis of random oligonucleotides pool via asymmetric PCR where end product was analyzed with electrophoresis and purified for further stages. The purified oligonucleotide pool was incubated in SELEX buffer, and further partition was performed in the next stage to obtain target specific aptamers. The isolated oligonucleotides are characterized and quantified after each round of partition, and significant results were obtained. After the repetitive partition and amplification steps of target-specific oligonucleotides, final stage included sequencing of end product. We can confirm the specific sequence for anti-psychoactive drugs, which will be further used in diagnostic application in clinical and forensic set-up.

Keywords: anti-psychotic drugs, aptamer, biosensor, ssDNA, SELEX

Procedia PDF Downloads 134
373 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 10
372 The Effects of Red Onion (Allium cepa) Extract on Histopathological Appearance of Bursa fabricius in Layers in Open House System

Authors: A. D. Paryuni, R. N. Nataria, R. Wasito

Abstract:

Layer chickens are a poultry commodity that has an important role in producing eggs and meat to support the availability of animal proteins. The layer chickens still have obstacles to increasing their productivity, especially due to poultry diseases which can result not only in decreased egg production but also morbidity and mortality. To overcome this condition, phyto-therapeutic and/or phyto-preventive approaches which are efficacious, safe and cheap are needed. One of the herbal spices from Indonesia which is greatly possible to be promoted as an herbal medicine is a red onion (Allium cepa). The objective of the present study was to identify and determine the effect of red onion extract (Allium cepa) as anti-infection and immuno-modulator of Bursa fabricius in layer chickens raised in an open house system. Eighteen layer chickens at 17 days of age were divided randomly into three group of six each. Those were layer chickens without red onion extract (Group K I), Group K II gave red onion extract via drinking water and Group K III gave red onion extract peroral for 30 days. Water and feed were given ad libitum. Necropsy was conducted every 10 days by taking two samples of layer chickens/Group. Bursa fabricius was processed histopathologically and stained-routinely with hematoxylin-eosinand was then examined under light microscope. The results of the present study indicated that bursaFabricius in layer chickens in Groups K I, K II, and K III that were necropsied at days 10 and 20 had normal histologic structures. However, Bursa fabricius in Group K I at day 30, had vacuolization with mild to moderate large vacuoles containing homogenous eosinophilic fluid and atrophy of lymphoid follicles. Mild vacuolization in the follicle of Bursa fabricius was seen in layer chickens in Group K II, whereas layer chickens in Group K III had normal histologic structures of Bursa fabricius. It was concluded that apparently, red onion extract (Allium cepa) has herbal preventive effects against the pathological lesions in the Bursa fabricius of layer chickens.

Keywords: Bursa fabricius, disease of poultry, hematoxylin-eosin, layer chickens, red onion extract

Procedia PDF Downloads 413
371 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract

Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani

Abstract:

Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.

Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ

Procedia PDF Downloads 476
370 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan

Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.

Keywords: edible film, collagen, myofibril, carrageenan

Procedia PDF Downloads 429