Search results for: native plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3283

Search results for: native plants

2023 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 195
2022 Biological Treatment of a Mixture of Iodine-Containing Aromatic Compounds from Industrial Wastewaster

Authors: A. Elain, M. Le Fellic, A. Le Pemp, N. Hachet

Abstract:

Iodinated Compounds (IC) are widely detected contaminants in most aquatic environments including sewage treatment plant, surface water, ground water and even drinking water, up to the µg.L-1 range. As IC contribute in the adsorbable organic halides (AOX) level, their removal or dehalogenation is expected. We report here on the biodegradability of a mixture of IC from an industrial effluent using a microbial consortium adapted to grow on IC as well as the native microorganisms. Both aerobic and anaerobic treatments were studied during batch experiments in 500-mL flasks. The degree of mineralization and recovery of iodide were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron acceptor was found to stimulate anaerobic reductive deiodination of IC while sodium chloride even at high concentration (22 g.l-1) had no influence on the degradation rates nor on the microbial viability. Phylogenetic analysis of 16S RNA gene sequence (MicroSeq®) was applied to provide a better understanding of the degradative microbial community.

Keywords: iodinated compounds, biodegradability, deiodination, electron-accepting conditions, microbial consortium

Procedia PDF Downloads 311
2021 Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus

Authors: Anna Pick Kiong Ling, Jia May Chin, Rhun Yian Koh, Ying Pei Wong

Abstract:

Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.

Keywords: anti-inflammatory, natural products, prostaglandin E2, reactive oxygen species

Procedia PDF Downloads 266
2020 Nutritional Characteristics, Phytochemical and Antimicrobial Properties Vaccinium Pavifolium (Ericacea) Leaf Protein Concentrates

Authors: Sodamade A., Bolaji K. A.

Abstract:

Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that could serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of the plant (Vaccinium pavifolium) was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education Campus, Oyo. The sample was authenticated at the Forestry Research Institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition, mineral analysis phytochemical and antimicrobial properties were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive. The mineral analysis of the sample showed; Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g, Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g Cadmium and Mercury were not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, Steroids, Terpenoids, Cardiac glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Vaccinium parvifolium L. leaf protein concentrates showed that it contains bioactive compounds that are capable of combating the following microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisialae pneumonia and Proteus mirabilis. The results of the analysis of Vaccinium parvifolium L. leaf protein concentrates showed that the sample contains valuable nutrient and mineral constituents, and phytochemical compounds that could make the sample useful for medicinal activities.

Keywords: leaf protein concentrates, vaccinium parvifolium, nutritional characteristics, mineral composition, antimicrobial activity

Procedia PDF Downloads 58
2019 Electrochemical Inactivation of Toxic Cyanobacteria and Degradation of Cyanotoxins

Authors: Belal Bakheet, John Beardall, Xiwang Zhang, David McCarthy

Abstract:

The potential risks associated with toxic cyanobacteria have raised growing environmental and public health concerns leading to an increasing effort into researching ways to bring about their removal from water, together with destruction of their associated cyanotoxins. A variety of toxins are synthesized by cyanobacteria and include hepatotoxins, neurotoxins, and cytotoxins which can cause a range of symptoms in humans from skin irritation to serious liver and nerve damage. Therefore drinking water treatment processes should ensure the consumers’ safety by removing both cyanobacterial cells, and cyanotoxins from the water. Cyanobacterial cells and cyanotoxins presented challenges to the conventional water treatment systems; their accumulation within drinking water treatment plants has been reported leading to plants shut down. Thus, innovative and effective water purification systems to tackle cyanobacterial pollution are required. In recent years there has been increasing attention to the electrochemical oxidation process as a feasible alternative disinfection method which is able to generate in situ a variety of oxidants that would achieve synergistic effects in the water disinfection process and toxin degradation. By utilizing only electric current, the electrochemical process through electrolysis can produce reactive oxygen species such as hydroxyl radicals from the water, or other oxidants such as chlorine from chloride ions present in the water. From extensive physiological and morphological investigation of cyanobacterial cells during electrolysis, our results show that these oxidants have significant impact on cell inactivation, simultaneously with cyanotoxins removal without the need for chemicals addition. Our research aimed to optimize existing electrochemical oxidation systems and develop new systems to treat water containing toxic cyanobacteria and cyanotoxins. The research covers detailed mechanism study on oxidants production and cell inactivation in the treatment under environmental conditions. Overall, our study suggests that the electrochemical treatment process e is an effective method for removal of toxic cyanobacteria and cyanotoxins.

Keywords: toxic cyanobacteria, cyanotoxins, electrochemical process, oxidants

Procedia PDF Downloads 216
2018 Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert

Authors: T. Bettaieb, S. Soufi, S. Arbaoui

Abstract:

Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures.

Keywords: chilling tolerance, enzymatic activity, stevia rebaudiana bert, low thermal stress

Procedia PDF Downloads 424
2017 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up

Procedia PDF Downloads 303
2016 Flexible Technologies of Granulated Complex Fertilizers

Authors: Andrey M. Norov, Denis A. Pagaleshkin, Pavel S. Fedotov, Viacheslav M. Kolpakov, Konstantin G. Gorbovskiy

Abstract:

The article focuses on the latest research and developments (R&D) aimed at the development of plants for production of complex phosphorus-containing fertilizers which are in line with the principles of the best available techniques (BAT). The advantages of the implemented technical solutions are given. The paper describes developed options of flexible technologies for schemes with DGD (drum granulator dryer) and for schemes with AG-DD (ammoniator-granulator and dryer drum).

Keywords: ammoniator-granulator drier drum, phosphorus-containing fertilizer technology, PK, PKS and NPKS-fertilizers, WPA

Procedia PDF Downloads 187
2015 Sizing of Drying Processes to Optimize Conservation of the Nuclear Power Plants on Stationary

Authors: Assabo Mohamed, Bile Mohamed, Ali Farah, Isman Souleiman, Olga Alos Ramos, Marie Cadet

Abstract:

The life of a nuclear power plant is regularly punctuated by short or long period outages to carry out maintenance operations and/or nuclear fuel reloading. During these stops periods, it is essential to conserve all the secondary circuit equipment to avoid corrosion priming. This kind of circuit is one of the main components of a nuclear reactor. Indeed, the conservation materials on shutdown of a nuclear unit improve circuit performance and reduce the maintenance cost considerably. This study is a part of the optimization of the dry preservation of equipment from the water station of the nuclear reactor. The main objective is to provide tools to guide Electricity Production Nuclear Centre (EPNC) in order to achieve the criteria required by the chemical specifications of conservation materials. A theoretical model of drying exchangers of water station is developed by the software Engineering Equation Solver (EES). It used to size requirements and air quality needed for dry conservation of equipment. This model is based on heat transfer and mass transfer governing the drying operation. A parametric study is conducted to know the influence of aerothermal factor taking part in the drying operation. The results show that the success of dry conservation of equipment of the secondary circuit of nuclear reactor depends strongly on the draining, the quality of drying air and the flow of air injecting in the secondary circuit. Finally, theoretical case study performed on EES highlights the importance of mastering the entire system to balance the air system to provide each exchanger optimum flow depending on its characteristics. From these results, recommendations to nuclear power plants can be formulated to optimize drying practices and achieve good performance in the conservation of material from the water at the stop position.

Keywords: dry conservation, optimization, sizing, water station

Procedia PDF Downloads 249
2014 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold

Authors: Tan Yong Sheng Edgar, Yeong Wai Yee

Abstract:

Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.

Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine

Procedia PDF Downloads 419
2013 Phi Thickening Induction as a Response to Abiotic Stress in the Orchid Miltoniopsis

Authors: Nurul Aliaa Idris, David A. Collings

Abstract:

Phi thickenings are specialized secondary cell wall thickenings that are found in the cortex of the roots in a wide range of plant species, including orchids. The role of phi thickenings in the root is still under debate through research have linked environmental conditions, particularly abiotic stresses such as water stress, heavy metal stress and salinity to their induction in the roots. It has also been suggested that phi thickenings may act as a barrier to regulate solute uptake, act as a physical barrier against fungal hyphal penetration due to its resemblance to the Casparian strip and play a mechanical role to support cortical cells. We have investigated phi thickening function in epiphytic orchids of the genus Miltoniopsis through induction experiment against factors such as soil compaction and water stress. The permeability of the phi thickenings in Miltoniopsis was tested through uptake experiments using the fluorescent tracer dyes Calcofluor white, Lucifer yellow and Propidium iodide then viewed with wide-field or confocal microscopy. To test whether phi thickening may prevent fungal colonization in the root cell, fungal re-infection experiment was conducted by inoculating isolated symbiotic fungus to sterile in vitro Miltoniopsis explants. As the movement of fluorescent tracers through the apoplast was not blocked by phi thickenings, and as phi thickenings developed in the roots of sterile cultures in the absence of fungus and did not prevent fungal colonization of cortical cells, the phi thickenings in Miltoniopsis do not function as a barrier. Phi thickenings were found to be absent in roots grown on agar and remained absent when plants were transplanted to moist soil. However, phi thickenings were induced when plants were transplanted to well-drained media, and by the application of water stress in all soils tested. It is likely that phi thickenings stabilize the root cortex during dehydration. Nevertheless, the varied induction responses present in different plant species suggest that the phi thickenings may play several adaptive roles, instead of just one, depending on species.

Keywords: abiotic stress, Miltoniopsis, orchid, phi thickening

Procedia PDF Downloads 131
2012 Nitrogen Fixation, Cytokinin and Exopolysachharide Production by indigenous Azotobacter spp. from East Nusa Tenggara

Authors: Reginawanti Hindersah, Widiya Septiani Perdanawati, Dewi Azizah Sulaksana, Hidiyah Ayu Ma’rufah

Abstract:

Maize in some region in East Nusa Tenggara Indonesia bordering Republic Democratic of Timor Leste is important local food crop and commonly cultivated using conventional method without appropriate plant nutrition system so that productivity is still low. A way to enhance local corn yield is adding biofertilizer containing nitrogen (N2) fixing bacteria such as Azotobacter. The purpose of this research was to determine N2 fixation, cytokinin as well as exopolysachharide production capacity of six indigenous Azotobacter strains in pure culture. The N2 fixation capacities of native 3 day old Azotobacter strains added to Ashby Media varied from 0.01 to 0.39 µM/g/hour. Cytokinin production of these strain in liquid culture of N-free Media was 0.11 to 40.04 ppm while exopolysachharide content in liquid culture of Vermani Media varied from 0.4 to 27.3 g/L. This results demonstrate that some local Azotobacter strains might be used as biofertilizer.

Keywords: azotobacter, local isolate, N fixation, phythohormone, exopolysaccaride

Procedia PDF Downloads 413
2011 Yeasts Associated to Spontaneous Date Vinegar Process

Authors: F. Halladj, H. Amellal, S. Benamara

Abstract:

Current consumer trends go towards natural products defined as the products obtained by a traditional manufacturing method. Vinegar is one of those products marketed; it may be industrially obtained by a submerged (fast) or traditional (slow) processes. The latter exhibited a high quality because of its complex microbiological transformations (or two-stage fermentation) by the native must flora. Moreover, although that Acetic acid bacteria have traditionally been considered to play the leading role in vinegar production, some studies have recently highlighted that also yeasts metabolism can affect traditional vinegar chemical properties in a remarkable way. Thus, the aim of this study was to monitor a traditional slow process of vinegar as applied in the south of Algeria using date with hard texture (Degla-Beida variety) to isolate and identify the involved yeasts in order to select them as starter culture. Phenotypic and molecular analysis show that the non-Saccharomyces were the main yeasts species isolated throughout the alcoholic spontaneous fermentation and they included Hanseniaspora guilliermondii and Torulaspora delbrueckii.

Keywords: date vinegar, traditional production, yeasts, Phenotypic, Algeria

Procedia PDF Downloads 413
2010 Natural Dyes: A Global Perspective on Commercial Solutions and Industry Players

Authors: Laura Seppälä, Ana Nuutinen

Abstract:

Environmental concerns are increasing the interest in the potential uses of natural dyes. Natural dyes are more safe and environmentally friendly option than synthetic dyes. However, one must be also cautious with natural dyes, because, for example, some dyestuff such as plants or mushrooms, as well as some mordants are poisonous. By natural dyes we mean dyes that are derived from plants, fungi, bark, lichens, algae, insects, and minerals. Different plant parts, such as stems, leaves, flowers, roots, bark, berries, fruits, and cones, can be utilized for textile dyeing and printing, pigment manufacture, and other processes depending on the season. They may be utilized to produce distinctive colour tones that are challenging to do with synthetic dyes. This adds value to textiles and makes them stand out. Synthetic dyes quickly replaced natural dyes, after being developed in the middle of the 19th century, but natural dyes have remained the dyeing method of crafters until recently. This research examines the commercial solutions for natural dyes in many parts of the world, such as Europe, the United States, South America, Africa, Asia, New Zealand, and Australia. This study aims to determine the commercial status of natural dyes. Each continent has its own traditions and specific dyestuffs. The availability of natural dyes can vary depending on several aspects, including plant species, temperature, and harvesting techniques, which poses a challenge to the work of designers and crafters. While certain plants may only provide dyes during specific seasons, others may do so continuously. To find the ideal time to collect natural dyes, it is critical to research various plant species and their harvesting techniques. Furthermore, to guarantee the quality and colour of the dye, plant material must be handled and processed properly. This research was conducted via an internet search, and results were searched systematically for commercial stakeholders in the field. The research question looked at commercial players in the field of natural dyes. This qualitative case study interpreted the data using thematic analysis. Each webpage was screenshotted and analyzed in reflection on to research question. Online content analysis means systematically coding and analyzing qualitative data. The most evident result was that the natural dyes interest in different parts of the World. There are clothing collections dyed with natural dyes, dyestuff stores, and courses for natural dyeing. This article presents the designers who work with natural dyes and actors who are involved with the natural dye industry. Several websites emphasized the safety and environmental benefits of natural dyes. Many of them included eye-catching images of textiles dyed naturally, and the colours of such dyes are thought to be attractive since they are beautiful and natural hues. The search did not find big-scale industrial solutions for natural dyes, but there were several instances of dyeing with natural dyes. Understanding the players, designers, and stakeholders in the natural dye business is the purpose of this article. The comprehension of the current state of the art illustrates the direction that the natural dye business is currently taking.

Keywords: commercial solutions, environmental issues, key stakeholders, natural dyes, sustainability, textile dyeing

Procedia PDF Downloads 43
2009 Education, Technology and Geopolitics: The Arab World as an Instance

Authors: Abdulrahman Al Lily

Abstract:

This article spans the domains of education, technology and geo-politics. It uses as an instance the Arab scholarship of education and technology, viewing its scholarly community through the geographical lens of regionalism. It enquires into the power relations among scholars in the Arab region and between scholars in the Arab region and their fellows from outside the region. It addresses the research question: to what extent have region-informed factors affected the scholarly community of education and technology in the Arab region? This question was answered by both qualitative and numerical enquiry, analysing documents, interviews and a survey of native Arabic-speaking scholars. Having analysed the data using the grounded theory approach, two categories of power relations among scholars were identified: power relations within a particular region and power relations across regions. Considering these two categories, a theoretical proposition could be posited that there could be power relationships among scholars that exist on a regional basis. The recommendation is therefore that research should further shed light upon the regionalistic (and thus geographically informed political) dynamics of scholarly communities.

Keywords: education, technology, politics, geography, regionalism, Arab

Procedia PDF Downloads 486
2008 Teachers’ Language Insecurity in English as a Second Language Instruction: Developing Effective In-Service Training

Authors: Mamiko Orii

Abstract:

This study reports on primary school second language teachers’ sources of language insecurity. Furthermore, it aims to develop an in-service training course to reduce anxiety and build sufficient English communication skills. Language/Linguistic insecurity refers to a lack of confidence experienced by language speakers. In particular, second language/non-native learners often experience insecurity, influencing their learning efficacy. While language learner insecurity has been well-documented, research on the insecurity of language teaching professionals is limited. Teachers’ language insecurity or anxiety in target language use may adversely affect language instruction. For example, they may avoid classroom activities requiring intensive language use. Therefore, understanding teachers’ language insecurity and providing continuing education to help teachers to improve their proficiency is vital to improve teaching quality. This study investigated Japanese primary school teachers’ language insecurity. In Japan, teachers are responsible for teaching most subjects, including English, which was recently added as compulsory. Most teachers have never been professionally trained in second language instruction during college teacher certificate preparation, leading to low confidence in English teaching. Primary source of language insecurity is a lack of confidence regarding English communication skills. Their actual use of English in classrooms remains unclear. Teachers’ classroom speech remains a neglected area requiring improvement. A more refined programme for second language teachers could be constructed if we can identify areas of need. Two questionnaires were administered to primary school teachers in Tokyo: (1) Questionnaire A: 396 teachers answered questions (using a 5-point scale) concerning classroom teaching anxiety and general English use and needs for in-service training (Summer 2021); (2) Questionnaire B: 20 teachers answered detailed questions concerning their English use (Autumn 2022). Questionnaire A’s responses showed that over 80% of teachers have significant language insecurity and anxiety, mainly when speaking English in class or teaching independently. Most teachers relied on a team-teaching partner (e.g., ALT) and avoided speaking English. Over 70% of the teachers said they would like to participate in training courses in classroom English. Questionnaire B’s results showed that teachers could use simple classroom English, such as greetings and basic instructions (e.g., stand up, repeat after me), and initiate conversation (e.g., asking questions). In contrast, teachers reported that conversations were mainly carried on in a simple question-answer style. They had difficulty continuing conversations. Responding to learners’ ‘on-the-spot’ utterances was particularly difficult. Instruction in turn-taking patterns suitable in the classroom communication context is needed. Most teachers received grammar-based instruction during their entire English education. They were predominantly exposed to displayed questions and form-focused corrective feedback. Therefore, strategies such as encouraging teachers to ask genuine questions (i.e., referential questions) and responding to students with content feedback are crucial. When learners’ utterances are incorrect or unsatisfactory, teachers should rephrase or extend (recast) them instead of offering explicit corrections. These strategies support a continuous conversational flow. These results offer benefits beyond Japan’s English as a second Language context. They will be valuable in any context where primary school teachers are underprepared but must provide English-language instruction.

Keywords: english as a second/non-native language, in-service training, primary school, teachers’ language insecurity

Procedia PDF Downloads 55
2007 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).

Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe

Abstract:

Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.

Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media

Procedia PDF Downloads 39
2006 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress

Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor

Abstract:

Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.

Keywords: fungal infection, jasmonic acid defence, tomato, spermidine

Procedia PDF Downloads 106
2005 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress

Authors: S. K. Thind, Aparjot Kaur

Abstract:

Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.

Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism

Procedia PDF Downloads 310
2004 Simultaneous Interpreting in the European Parliament: Linguistic Quality of the Political Discourse: An Empirical Analysis

Authors: Alicja Zapolnik-Plachetka

Abstract:

The paper examines the impact of the Members’ of the European Parliament (MEPs) language choice on the linguistic quality of their political discourse as delivered by the interpreters. The study, designed by the author, who is an EU interpreter herself, consisted of three phases. First, a number of speeches of Polish and Spanish MEPs were analyzed to determine whether the incidence of use of certain figures of speech depending on whether the speech had been delivered in English or their respective mother tongue. Then the use of figures of speech was also analyzed based on speeches by some British MEPs, in order to determine what was the incidence for the native users of English. Subsequently, the speeches were compared with their interpretations to find out whether the interpreters managed to convey accurately the means of oratory used by the MEPs. The final result shows that in case of institutional environments dependant on simultaneous interpretation the speakers’ choices can, in fact, influence the linguistic quality of the political communication.

Keywords: content accuracy, European Parliament, political discourse, simultaneous interpreting

Procedia PDF Downloads 118
2003 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 219
2002 Reclamation of Mining Using Vegetation - A Comparative Study of Open Pit Mining

Authors: G. Surendra Babu

Abstract:

We all know the importance of mineral wealth, which has been buried inside the layers of the earth for decades. These are the natural energy sources that are used in our day to day life like fuel, electricity, construction, etc. but the process of extraction causes damage to the nature that can’t be returned back and which are left over after completion of mining we can see these are barren from decades these remain unused degraded land. Most of them are covered with vegetation before the start during mining which damages the native vegetation of the region and disturbs the watershed boundary of the regions and it also disturbs the biodiversity of the reign. The major motto of the study is to understand the various issues that are found and to understand various methods of reclamations process that are suitable for revegetating and also variously practiced which are carried out in the different case studies and government guidelines procedure of lease licenses which includes the environmental clearances and also to study the vegetation pattern according to the major issues identified. And finally suggesting the new guidelines with respect to the old guidelines which helps in the revegetation of the mine-sites which helps in establishing of its own sustainable ecosystem in future.

Keywords: reclamation, open-pit mining, revegetation, reclamation methods

Procedia PDF Downloads 173
2001 Colocalization Analysis to Understand Yttrium Uptake in Saxifraga paniculata Using Complementary Imaging Technics

Authors: Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, Perrine Chaurand, Cédric Dentant, Clement Levard, Jerome Rose

Abstract:

Over the last decades, yttrium (Y) has gained importance in high-tech applications. It is an essential part of alloys and compounds used for lasers, displays, or cell phones, for example. Due to its chemical similarities with the lanthanides, Y is often considered a rare earth element (REE). Despite their increased usage, the environmental behavior of REEs remains poorly understood. Especially regarding their interactions with plants, many uncertainties exist. On the one hand, Y is known to have a negative effect on root development and germination, but on the other hand, it appears to promote plant growth at low concentrations. In order to understand these phenomena, a precise knowledge is necessary about how Y is absorbed by the plant and how it is handled once inside the organism. Contradictory studies exist, stating that due to a similar ionic radius, Y and the other REEs might be absorbed through Ca²⁺-channels, while others suspect that Y has a shared pathway with Al³⁺. In this study, laser ablation coupled ICP-MS, and synchrotron-based micro-X-ray fluorescence (µXRF, beamline Nanoscopium, SOLEIL, France) have been used in order to localize Y within the plant tissue and identify associated elements. The plant used in this study is Saxifraga paniculata, a rugged alpine plant that has shown an affinity for Y in previous studies (in prep.). Furthermore, Saxifraga paniculata performs guttation, which means that it possesses phloem sap secreting openings on the leaf surface that serve to regulate root pressure. These so-called hydathodes could provide special insights in elemental transport in plants. The plants have been grown on Y doped soil (500mg/kg DW) for four months. The results showed that Y was mainly concentrated in the roots of Saxifraga paniculata (260 ± 85mg/kg), and only a small amount was translocated to the leaves (10 ± 7.8mg/kg). µXRF analysis indicated that within the root transects, the majority of Y remained in the epidermis and hardly penetrated the stele. Laser ablation coupled ICP-MS confirmed this finding and showed a positive correlation in the roots between Y, Fe, Al, and to a lesser extent Ca. In the stem transect, Y was mainly detected in a hotspot of approximately 40µm in diameter situated in the endodermis area. Within the stem and especially in the hotspot, Y was highly colocalized with Al and Fe. Similar-sized Y hotspots have been detected in/on the leaves. All of them were strongly colocalized with Al and Fe, except for those situated within the hydathodes, which showed no colocalization with any of the measured elements. Accordingly, a relation between Y and Ca during root uptake remains possible, whereas a correlation to Fe and Al appears to be dominant in the aerial parts, suggesting common storage compartments, the formation of complexes, or a shared pathway during translocation.

Keywords: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Phytoaccumulation, Rare earth elements, Saxifraga paniculata, Synchrotron-based micro-X-ray fluorescence, Yttrium

Procedia PDF Downloads 132
2000 Are Some Languages Harder to Learn and Teach Than Others?

Authors: David S. Rosenstein

Abstract:

The author believes that modern spoken languages should be equally difficult (or easy) to learn, since all normal children learning their native languages do so at approximately the same rate and with the same competence, progressing from easy to more complex grammar and syntax in the same way. Why then, do some languages seem more difficult than others? Perhaps people are referring to the written language, where it may be true that mastering Chinese requires more time than French, which in turn requires more time than Spanish. But this may be marginal, since Chinese and French children quickly catch up to their Spanish peers in reading comprehension. Rather, the real differences in difficulty derive from two sources: hardened L1 language habits trying to cope with contrasting L2 habits; and unfamiliarity with unique L2 characteristics causing faulty expectations. It would seem that effective L2 teaching and learning must take these two sources of difficulty into consideration. The author feels that the latter (faulty expectations) causes the greatest difficulty, making effective teaching and learning somewhat different for each given foreign language. Examples from Chinese and other languages are presented.

Keywords: learning different languages, language learning difficulties, faulty language expectations

Procedia PDF Downloads 517
1999 Recent Advances of Isolated Microspore Culture Response in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Many biotechnology methods have been used in plant breeding programs. The in vitro isolated microspore culture is the one of these methods. For durum wheat, the use of this technology has been limited for a long time due to the low number of embryos produced and also most regeneration plants are albina. The objective of this paper is to show that using isolated microspores culture on durum wheat is possible due to the development of the new methods using the new pretreatment of the microspores before their isolation and cultivation.

Keywords: isolated microspore culture, pretreatments, in vitro embryogenesis, plant breeding program

Procedia PDF Downloads 515
1998 Relay Mining: Verifiable Multi-Tenant Distributed Rate Limiting

Authors: Daniel Olshansky, Ramiro Rodrıguez Colmeiro

Abstract:

Relay Mining presents a scalable solution employing probabilistic mechanisms and crypto-economic incentives to estimate RPC volume usage, facilitating decentralized multitenant rate limiting. Network traffic from individual applications can be concurrently serviced by multiple RPC service providers, with costs, rewards, and rate limiting governed by a native cryptocurrency on a distributed ledger. Building upon established research in token bucket algorithms and distributed rate-limiting penalty models, our approach harnesses a feedback loop control mechanism to adjust the difficulty of mining relay rewards, dynamically scaling with network usage growth. By leveraging crypto-economic incentives, we reduce coordination overhead costs and introduce a mechanism for providing RPC services that are both geopolitically and geographically distributed.

Keywords: remote procedure call, crypto-economic, commit-reveal, decentralization, scalability, blockchain, rate limiting, token bucket

Procedia PDF Downloads 40
1997 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 56
1996 Decommissioning of Nuclear Power Plants: The Current Position and Requirements

Authors: A. Stifi, S. Gentes

Abstract:

Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.

Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development

Procedia PDF Downloads 457
1995 Self-focused Language and the Reversive Impact of Depression in Negative Mood

Authors: Soheil Behdarvandirad

Abstract:

The relationship between depression and self-focused language has been well documented. The more depressed a person is, the more "I"s, "me"s, and "my"s they will use. The present study attempted to factor in the impact of mood and examine whether negative mood has self-focused impacts similar to those of depression. For this purpose, 160 Iranian native speakers of Farsi were divided into three experimental groups of negative, neutral, and positive groups. After completing the BDI-II inventory and depression measurement, they were presented with pretested mood stimuli (3 separate videos to induce the target moods). Finally, they were asked to write between 10 to 20 minutes about a topic that asked them to freely write about their state of life, how you feel about it and the reasons that had shaped their current life circumstances. While the significant correlation between depression and I-talk was observed, negative mood led to more we-talk in general and seemed to even push the participants away from self-rumination. It seems that it is an emotion-regulatory strategy that participants subconsciously adopt to distract themselves from the disturbing mood. However, negative mood intensified the self-focused language among depressed participants. Such results can be further studied by examining brain areas that are more involved in self-perception and particularly in precuneus.

Keywords: self-focused language, depression, mood, precuneus

Procedia PDF Downloads 63
1994 Phytomolecules Intervening Inflammation in IgA Nephropathy: A Possible Therapeutic Approach

Authors: Rajiv Jash, Himangshusekhar Maji

Abstract:

Phytomolecules have long been associated with the effective treatment of various disorders since ages. This study focuses on identifying the immunomodulatory pure molecules isolated from plants, which can be studied for their effect in alleviating IgAN. All the phytomolecules mentioned here have inflammation-reducing properties, and IgAN, being an autoimmune disease, can be a good target of these phytomolecules. Various pathological pathways of IgA nephropathy can be targeted with these phytomolecules, and this study is an effort to find out the rationale behind the choice of the molecules based on their ability to target the effector molecules of those pathological pathways.

Keywords: IgAN, fibrosis, inflammation, ESRD, TGFβ

Procedia PDF Downloads 76