Search results for: biosimilar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: biosimilar

3 Efficacy and Safety Profile of Biosimilar PEG-Asparaginase (Asviia) in Patients with Acute Leukaemia: A Retrospective Study from Kashmir

Authors: Faisal Guru Rashid, Syed Nisar, Mohammad Hussain Mir, Ulfat Ara, Richa Tripathi

Abstract:

Background: Biosimilar pegylated L-asparaginase is a potential alternative to the innovator version for treating acute lymphoblastic leukaemia (ALL) in Indian children, addressing issues of availability and cost. Biosimilar offers a viable solution, ensuring wider access to essential treatment in resource-limited settings like India. With this in mind, we conducted a study to assess the efficacy and toxicity of Biosimilar Pegaspargase (Asviia) in patients with Acute Leukaemia at our centre. Materials and methods: A retrospective study was conducted to assess the efficacy and safety of biosimilar PEG-asparaginase (Asviia) in newly diagnosed paediatric acute lymphoblastic leukaemia patients at the Paediatric Oncology unit of Department of Medical Oncology at Sher-I-Kashmir Institute of Medical Sciences, SKIMS Srinagar. The study included patients of ALL treated at our centre between January 2021- and December 2023. Each patient received 2 induction doses of pegaspargenase. Results: 45 patients (16 females and 29 males) were included in the study who received biosimilar PEG-asparaginase (Asviia) as a part of the treatment protocol. The age range of patients was between 1 and 16 years with a median age was 7.5 years. Median PEG Asparaginase dose received was 1175 IU (1125-3750 IU). The majority of patients were Pre-B ALL. There was considerable improvement in the haematological parameters, like haemoglobin levels rising by 1.39 and platelet counts rising by 30,402 after the patients received the first dose of Peg-ASP. Biosimilar Pegaspargase in Acute Leukaemia patients showed a tolerable safety profile with no life-threatening events. 13% of patients exhibited allergic reactions, and 17% had sepsis. Two patients (4.4%) had pancreatitis and Transaminitis events. At the end of induction, out of 45 patients, 40 (88.89%) patients had complete remission with Minimal Residual Disease (MRD) negativity, while 5 patients were MRD positive. Conclusion: Biosimilar PEG-Asparaginase (Asviia) demonstrated a tolerable safety profile and good efficacy, with nearly 90% of patients having complete Remission with MRD negativity.

Keywords: acute lymphoblastic leukaemia, biosimilar, PEG-asparaginase, minimal residual disease, remission

Procedia PDF Downloads 0
2 Analytical Similarity Assessment of Bevacizumab Biosimilar Candidate MB02 Using Multiple State-of-the-Art Assays

Authors: Marie-Elise Beydon, Daniel Sacristan, Isabel Ruppen

Abstract:

MB02 (Alymsys®) is a candidate biosimilar to bevacizumab, which was developed against the reference product (RP) Avastin® sourced from both the European Union (EU) and United States (US). MB02 has been extensively characterized comparatively to Avastin® at a physicochemical and biological level using sensitive orthogonal state-of-the-art analytical methods. MB02 has been demonstrated similar to the RP with regard to its primary and higher-order structure, post- and co-translational profiles such as glycosylation, charge, and size variants. Specific focus has been put on the characterization of Fab-related activities, such as binding to VEGF A 165, which directly reflect the bevacizumab mechanism of action. Fc-related functionality was also investigated, including binding to FcRn, which is indicative of antibodies' half-life. The data generated during the analytical similarity assessment demonstrate the high analytical similarity of MB02 to its RP.

Keywords: analytical similarity, bevacizumab, biosimilar, MB02

Procedia PDF Downloads 238
1 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli

Authors: Ashima Sharma

Abstract:

Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.

Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding

Procedia PDF Downloads 185