Search results for: fluorescent compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2569

Search results for: fluorescent compounds

1399 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione

Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity

Abstract:

Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.

Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on

Procedia PDF Downloads 145
1398 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation

Authors: Chikang Wang, Jhongjheng Jian, Poming Huang

Abstract:

Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.

Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline

Procedia PDF Downloads 265
1397 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3

Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio

Abstract:

Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.

Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose

Procedia PDF Downloads 121
1396 The Relation Between Protein-Protein and Polysaccharide-Protein Interaction on Aroma Release from Brined Cheese Model

Authors: Mehrnaz Aminifar

Abstract:

The relation between textural parameters and casein network on release of aromatic compounds was investigated over 90-days of ripening. Low DE maltodextrin and WPI were used to modify the textural properties of low fat brined cheese. Hardness, brittleness and compaction of casein network were affected by addition of maltodextrin and WPI. Textural properties and aroma release from cheese texture were affected by interaction of WPI protein-cheese protein and maltodexterin-cheese protein.

Keywords: aroma release, brined cheese, maltodexterin, WPI

Procedia PDF Downloads 350
1395 Enzyme Inhibition Activity of Schiff Bases Against Mycobacterium Tuberculosis Using Molecular Docking

Authors: Imran Muhammad

Abstract:

The main cause of infectious disease in the modern world is Mycobacterium Tuberculosis (MT). To combat tuberculosis, new and efficient drugs are an urgent need in the modern world. Schif bases are potent for their biological pharmacophore activity. Thus we selected different Vanillin-based Schiff bases for their binding activity against target enzymes of Mycobacterium tuberculosis that is (DprE1 (decaprenyl phosphoryl-β-D-ribose 2′-epimerase), and DNA gyrase subunit-A), using molecular docking. We evaluate the inhibition potential, interaction, and binding mode of these compounds with the target enzymes.

Keywords: schiff bases, tuberculosis, DNA gyrase, DprE1, docking

Procedia PDF Downloads 68
1394 Engineering of Reagentless Fluorescence Biosensors Based on Single-Chain Antibody Fragments

Authors: Christian Fercher, Jiaul Islam, Simon R. Corrie

Abstract:

Fluorescence-based immunodiagnostics are an emerging field in biosensor development and exhibit several advantages over traditional detection methods. While various affinity biosensors have been developed to generate a fluorescence signal upon sensing varying concentrations of analytes, reagentless, reversible, and continuous monitoring of complex biological samples remains challenging. Here, we aimed to genetically engineer biosensors based on single-chain antibody fragments (scFv) that are site-specifically labeled with environmentally sensitive fluorescent unnatural amino acids (UAA). A rational design approach resulted in quantifiable analyte-dependent changes in peak fluorescence emission wavelength and enabled antigen detection in vitro. Incorporation of a polarity indicator within the topological neighborhood of the antigen-binding interface generated a titratable wavelength blueshift with nanomolar detection limits. In order to ensure continuous analyte monitoring, scFv candidates with fast binding and dissociation kinetics were selected from a genetic library employing a high-throughput phage display and affinity screening approach. Initial rankings were further refined towards rapid dissociation kinetics using bio-layer interferometry (BLI) and surface plasmon resonance (SPR). The most promising candidates were expressed, purified to homogeneity, and tested for their potential to detect biomarkers in a continuous microfluidic-based assay. Variations of dissociation kinetics within an order of magnitude were achieved without compromising the specificity of the antibody fragments. This approach is generally applicable to numerous antibody/antigen combinations and currently awaits integration in a wide range of assay platforms for one-step protein quantification.

Keywords: antibody engineering, biosensor, phage display, unnatural amino acids

Procedia PDF Downloads 140
1393 Experimental and Theoretical Characterization of Supramolecular Complexes between 7-(Diethylamino)Quinoline-2(1H)-One and Cucurbit[7] Uril

Authors: Kevin A. Droguett, Edwin G. Pérez, Denis Fuentealba, Margarita E. Aliaga, Angélica M. Fierro

Abstract:

Supramolecular chemistry is a field of growing interest. Moreover, studying the formation of host-guest complexes between macrocycles and dyes is highly attractive due to their potential applications. Examples of the above are drug delivery, catalytic process, and sensing, among others. There are different dyes of interest in the literature; one example is the quinolinone derivatives. Those molecules have good optical properties and chemical and thermal stability, making them suitable for developing fluorescent probes. Secondly, several macrocycles can be seen in the literature. One example is the cucurbiturils. This water-soluble macromolecule family has a hydrophobic cavity and two identical carbonyl portals. Additionally, the thermodynamic analysis of those supramolecular systems could help understand the affinity between the host and guest, their interaction, and the main stabilization energy of the complex. In this work, two 7-(diethylamino) quinoline-2 (1H)-one derivative (QD1-2) and their interaction with cucurbit[7]uril (CB[7]) were studied from an experimental and in-silico point of view. For the experimental section, the complexes showed a 1:1 stoichiometry by HRMS-ESI and isothermal titration calorimetry (ITC). The inclusion of the derivatives on the macrocycle lends to an upward shift in the fluorescence intensity, and the pKa value of QD1-2 exhibits almost no variation after the formation of the complex. The thermodynamics of the inclusion complexes was investigated using ITC; the results demonstrate a non-classical hydrophobic effect with a minimum contribution from the entropy term and a constant binding on the order of 106 for both ligands. Additionally, dynamic molecular studies were carried out during 300 ns in an explicit solvent at NTP conditions. Our finding shows that the complex remains stable during the simulation (RMSD ~1 Å), and hydrogen bonds contribute to the stabilization of the systems. Finally, thermodynamic parameters from MMPBSA calculations were obtained to generate new computational insights to compare with experimental results.

Keywords: host-guest complexes, molecular dynamics, quinolin-2(1H)-one derivatives dyes, thermodynamics

Procedia PDF Downloads 87
1392 Twist2 Is a Key Regulator of Cell Proliferation in Acute Lymphoblastic Leukaemia

Authors: Magdalena Rusady Goey, Gordon Strathdee, Neil Perkins

Abstract:

Background: Acute lymphoblastic leukaemia (ALL) is the most frequent type of childhood malignancy, accounting for 25% of all cases. TWIST2, a basic helix-loop-helix transcription factor, has been implicated in ALL development. Prior studies found that TWIST2 undergoes epigenetic silencing in more than 50% cases of ALL through promoter hypermethylation and suggested that re-expression of TWIST2 may inhibit cell growth/survival of leukaemia cell lines. TWIST2 has also been implicated as a regulator of NF-kappaB activity, which is constitutively active in leukaemia. Here, we use a lentiviral transductions system to confirm the importance of TWIST2 in controlling leukaemia cell growth and to investigate whether this is achieved through altered regulation of NF-kappaB activity. Method: Re-expression of TWIST2 in leukaemia cell lines was achieved using lentiviral-based transduction. The lentiviral vector also expresses enhanced green fluorescent protein (eGFP), allowing transduced cells to be tracked using flow cytometry. Analysis of apoptosis and cell proliferation were done using annexinV and VPD450 staining, respectively. Result and Discussion: TWIST2-expressing cells were rapidly depleted from a mixed population in ALL cell lines (NALM6 and Reh), indicating that TWIST2 inhibited cell growth/survival of ALL cells. In contrast, myeloid cell lines (HL60 and K562) were comparatively insensitive to TWIST2 re-expression. Analysis of apoptosis and cell proliferation found no significant induction of apoptosis, but did find a rapid induction of proliferation arrest in TWIST2-expressing Reh and NALM6 cells. Initial experiment with NF-kappaB inhibitor demonstrated that inhibition of NF-kappaB has similar impact on cell proliferation in the ALL cell lines, suggesting that TWITST2 may induce cell proliferation arrest through inhibition of NF-kappaB. Conclusion: The results of this study suggest that epigenetic inactivation of TWIST2 in primary ALL leads to increased proliferation, potentially by altering the regulation of NF-kappaB.

Keywords: leukaemia, acute lymphoblastic leukaemia, NF-kappaB, TWIST2, lentivirus

Procedia PDF Downloads 342
1391 Influence of IL-1β on Hamster Blastocyst Hatching via Regulation of Hatching Associated Proteases

Authors: Madhulika Pathak, Polani Seshagiri, Vani Venkatappa

Abstract:

Blastocyst hatching is an indispensable process for successful implantation. One of the major reasons for implantation failure in IVF clinic is poor quality of embryo, which are not development/hatching-competent. Therefore, attempts are required to develop or enhance the culture system with a molecule recapitulating the autocrine/paracrine factors containing the environment of in-vivo endometrial milieu. We have tried to explore the functional molecules involved in the hamster hatching phenomenon. Blastocyst hatching is governed by several molecules that are entwined and regulate this process, among which cytokines are known to be expressed and are still least explored. Two of such cytokines we have used for our study are IL-1β and its natural antagonist IL-1ra to understand the functional dynamics of cytokines involved in the hatching process. Using hamster, an intriguing experimental model for hatching behavior, we have shown the mRNA (qPCR) and protein (ICC) expression of IL-1β, IL-1ra and IL-1 receptor type 1 throughout all the stages of morula, blastocyst and hatched blastocyst. Post-asserting the expression, the functional role is shown by supplementation studies, where IL-1β supplementation showed enhancement in hatching level (IL-1β treated: 84.1 ± 4.2% vs control: 63.7 ± 3.1 %, N=11), further confirmed by the diminishing effect of IL-1ra on hatching rate (IL-1ra treated: 27.5 ± 11.1% vs control: 67.9 ± 3.1%). The exogenous supplementation of IL-1ra decreased the survival rate of embryos and affected the viability in dose-dependent manner, establishing the importance of IL-1β in blastocyst cell survival. Previously, the cathepsin L and B were established as the proteases that were involved in the hamster hatching process. The inducing effect of IL-1β was correlated with enhanced mRNA level, as analyzed by qPCR, for both CAT L (by 1.9 ± 0.5 fold) and CAT B (by 3.5 ± 0.1) fold which was diminished in presence of IL-1ra (Cat L by 88 percent and Cat B by 94 percent. Moreover, using a specific fluorescent substrate-based assay kit, the enzymatic activity of these proteases was found to be increased in presence of IL-1β (Cat L by 2.1 ± 0.1 fold and CAT B by 2.3 ± 0.7 fold) and was curtailed in presence of IL-1ra. These observations provide functional insights with respect to the involvement of cytokines in the hatching process. This has implications in understanding the hatching biology and improving the embryo development quality in IVF clinics.

Keywords: Blastocyst, Cytokines, Hatching, Interleukin

Procedia PDF Downloads 139
1390 Cultivation of Halophytes: Effect of Salinity on Nutritional and Functional Properties

Authors: Luisa Barreira, Viana Castaneda, Maria J. Rodrigues, Florinda Gama, Tamara Santos, Marta Oliveira, Catarina Pereira, Maribela Pestana, Pedro Correia, Miguel Salazar, Carla Nunes, Luisa Custodio, Joao Varela

Abstract:

In the last century, the world witnessed an exponential demographic increase that has put an enormous pressure on agriculture and food production. Associated also with climate changes, there has been a decrease in the amount of available freshwater and an increased salinization of soils which can affect the production of most food crops. Halophytes, however, are plants able to withstand high salinities while maintaining a good growth productivity. To cope with the excess salt, they produce secondary metabolites (e.g. vitamins and phenolic compounds) which, along with the natural presence of some minerals, makes them not only nutritionally rich but also functional foods. Some halophytes, as quinoa or salicornia, are already used in some countries, mostly as gourmet food. Hydroponic cultivation of halophytes using seawater or diluted seawater for watering can decrease the pressure on freshwater resources while producing a nutritional and functional food. The XtremeGourmet project funded by the EU aims to develop and optimize the production of different halophytes by hydroponics. One of the more specific objectives of this project is the study of halophytes’ productivity and chemical composition under different abiotic conditions, e.g. salt and nutrient concentration and light intensity. Three species of halophytes commonly occurring in saltmarshes of the South of Portugal (Inula chrithmoides, Salicornia ramosissima and Mesembryanthemum nodiflorum) were cultivated using hydroponics under different salinities, ranging from 5 to 45 dS/m. For each condition, several parameters were assessed namely: total and commercial productivity, electrical conductivity, total soluble solids, proximal composition, mineral profile, total phenolics, flavonoids and condensed tannins content and antioxidant activity. Results show that productivity was significantly reduced for all plants with increasing salinity up to salinity 29 dS/m and remained low onwards. Oppositely, the electrical conductivity and the total soluble solids content of the produced plants increased with salinity, reaching a plateau at 29 dS/m. It seems that plants reflect the salt concentration of the water up to some point, being able to regulate their salt content for higher salinities. The same tendency was observed for the ash content of these plants, which is related to the mineral uptake from the cultivating media and the plants’ capacity to both accumulate and regulate ions’ concentration in their tissues. Nonetheless, this comes with a metabolic cost which is observed by a decrease in productivity. The mineral profile of these plants shows high concentrations of sodium but also high amounts of potassium. In what concerns the microelements, these plants appear to be a good source of manganese and iron and the low amounts of toxic metals account for their safe consumption in moderate amounts. Concerning the phenolics composition, plants presented moderate concentrations of phenolics but high amounts of condensed tannins, particularly I. crithmoides which accounts for its characteristic sour and spicy taste. Contrary to some studies in which higher amounts of phenolics were found in plants cultivated under higher salinities, in this study, the highest amount of phenolic compounds were found in plants grown at the lowest or intermediate salinities. Nonetheless, there was a positive correlation between the concentration of these compounds and the antioxidant capacity of the plants’ extracts.

Keywords: functional properties, halophytes, hydroponics, nutritional composition, salinity effect

Procedia PDF Downloads 264
1389 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 436
1388 Synthesis, Structural and Magnetic Properties of CdFe2O4 Ferrite

Authors: Justice Zakhele Msomi

Abstract:

Nanoparticles of CdFe2O4 with particle size of about 10 nm have been synthesized by high energy ball milling and co-precipitation processes. The synthesis route appears to have some effects on the properties. The compounds have been characterized by X-ray diffraction, Fourier Transform Infrared (FTIR), transmission electron microscopy (TEM), Mössbauer and magnetization measurements. The XRD pattern of CdFe2O4 provides information about single-phase formation of spinel structure with cubic symmetry. The FTIR measurements between 400 and 4000 cm-1 indicate intrinsic cation vibration of the spinel structure. The Mössbauer spectra were recorded at 4 K and 300 K. The hyperfine fields appear to be highly sensitive on particle size. The evolution of the properties as a function of particle size is also presented.

Keywords: ferrite, nanoparticles, magnetization, Mössbauer

Procedia PDF Downloads 397
1387 Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries

Authors: Ziani Borhane Eddine Cherif, Hazzi Mohamed, Mouhouche Fazia

Abstract:

The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively.

Keywords: aromatic plants, essential oils, no-volatils extracts, bioactive molecules, antioxidant activity, insecticidal activity, antibiotic activity

Procedia PDF Downloads 218
1386 Polyphenol and Antimicrobial Activity in Olive Oil from Algeria

Authors: Kamel Zemour, Kada Mohamed Amine Chouhim, Mohamed Mairif, Tadj Eddine Adda Ardjan

Abstract:

Many recent studies show the positive effect of phenolic compounds in olive oil on health. They are known for their biological properties, where they have shown potential activity as an antioxidant, anti-inflammatory, and antimicrobial agents. However, this characteristic is rarely studied in olive oil from different regions of Algeria. Different samples collected from the western region of Algeria were evaluated for their polyphenol content, antioxidant activity, and antimicrobial effect. The obtained results demonstrated that this oil is rich in polyphenols and revealed high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Finally, this study has highlighted the nutritional and pharmaceutical importance of olive oil grown in Algeria.

Keywords: olive oil, polyphenols, antioxidant activity, antimicrobial activity

Procedia PDF Downloads 144
1385 Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x

Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze

Abstract:

On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.

Keywords: InAs, InP, solid solutions, irradiation

Procedia PDF Downloads 174
1384 Exploring the Feasibility of Introducing Particular Polyphenols into Cow Milk Naturally through Animal Feeding

Authors: Steve H. Y. Lee, Jeremy P. E. Spencer

Abstract:

The aim of the present study was to explore the feasibility of enriching polyphenols in cow milk via addition of flavanone-rich citrus pulp to existing animal feed. 8 Holstein lactating cows were enrolled onto the 4 week feeding study. 4 cows were fed the standard farm diet (control group), with another 4 (treatment group) which are fed a standard farm diet mixed with citrus pulp diet. Milk was collected twice a day, 3 times a week. The resulting milk yield and its macronutrient composition as well as lactose content were measured. The milk phenolic compounds were analysed using electrochemical detection (ECD).

Keywords: milk, polyphenol, animal feeding, lactating cows

Procedia PDF Downloads 296
1383 Contribution of the Corn Milling Industry to a Global and Circular Economy

Authors: A. B. Moldes, X. Vecino, L. Rodriguez-López, J. M. Dominguez, J. M. Cruz

Abstract:

The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly.

Keywords: biosurfactantes, circular economy, corn, sustainability

Procedia PDF Downloads 259
1382 Bioinsecticidal Activity and Phytochemical Study of the Crude Extract from the Plant Artemisia judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However, alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 516
1381 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 275
1380 Spectrophotometric Determination of 5-Aminosalicylic Acid in Pharmaceutical Samples

Authors: Chand Pasha

Abstract:

A Simple, accurate and precise spectrophotometric method for the quantitative analysis of determination of 5-aminosalicylic acid is described. This method is based on the reaction of 5-aminosalicylic acid with nitrite in acid medium to form diazonium ion, which is coupled with acetylacetone in basic medium to form azo dyes, which shows absorption maxima at 470 nm. The method obeys Beer’s law in the concentration range of 0.5-11.2 gml-1 of 5-aminosalicylic acid with acetylacetone. The molar absorptivity and Sandell’s sensitivity of 5-aminosalicylic acid -acetylacetone azo dye is 2.672 ×104 lmol-1cm-1, 5.731 × 10-3 gcm-2 respectively. The dye formed is stable for 10 hrs. The optimum reaction conditions and other analytical parameters are evaluated. Interference due to foreign organic compounds have been investigated. The method has been successfully applied to the determination of 5-aminosalicylic acid in pharmaceutical samples.

Keywords: spectrophotometry, diazotization, mesalazine, nitrite, acetylacetone

Procedia PDF Downloads 184
1379 Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats

Authors: S. Buloyan, V. Mamikonyan, H. Hakobyan, H. Harutyunyan, H. Gasparyan

Abstract:

The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence, liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well known anticirrhotic drug ursodeoxycholic acid (ursodiol) have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment.

Keywords: carbon tetrachloride, GSE, liver cirrhosis, prevention, treatment

Procedia PDF Downloads 477
1378 Collection, Cryopreservation, and Fertilizing Potential of Bovine Spermatozoa Collected from the Epididymis Evaluated by Conventional Techniques and by Flow Cytometry

Authors: M. H. Moreira da Silva, L. Valadao, F. Moreira da Silva

Abstract:

In the present study, the fertilizing capacity of bovine spermatozoa was evaluated before and after its cryopreservation. For this, the testicles of 100 bulls slaughtered on Terceira Island were dissected, the epididymal tails were separated, and semen was recovered by the flotation method and then evaluated by phase contrast microscopy and by flow cytometry. For phase contrast microscopy, a drop of semen was used to evaluate the percentage of motile spermatozoa (from 0 to 100%) and motility (from 0 to 5). After determining the concentration and the abnormal forms, semen was diluted to a final concentration of 50 x 106 spz/ml and evaluated by flow cytometer for membrane and acrosome integrity using the conjugation of fluorescent probes propidium iodide (PI) and Arachis hypogea agglutinin (FITC-PNA). Freezing was carried out in a programmable semen freezer, using 0.25 ml straws, in a total of 20 x 106 viable sperm per straw with glycerol as a cryoprotectant in a final concentration of 0.58 M. It was observed that, on average, a total of 7.25 ml of semen was collected from each bull. The viability and vitality rates were respectively 83.22 ± 7.52% and 3.8 ± 0.4 before freezing, decreasing to 58.81 ± 11.99% and 3.6 ± 0.6, respectively, after thawing. Regarding cytoplasmic droplets, it was observed that a high percentage of spermatozoa had medial cytoplasmic droplets (38.47%), with only 3.32% and 0.15% presenting proximal and distal cytoplasmic drops, respectively. By flow cytometry, it was observed that before freezing, the percentage of sperm with the damaged plasma membrane and intact acrosome was 3.61 ± 0.99%, increasing slightly to 4.21 ± 1.86% after cryopreservation (p<0.05). Regarding spermatozoa with damaged plasma membrane and acrosome, the percentage before freezing was 3.37±1.87%, increasing to 4.34 ±1.16% after thawing, and no significant differences were observed between these two values. For the percentage of sperm with the intact plasma membrane and damaged acrosome, this value was 2.04 ± 2.34% before freezing, decreasing to 0.89 ± 0.48% after thawing (p<0.05). The percentage of sperm with the intact plasma membrane and acrosome before freezing was 90.99±2.75%, with a slight decrease to 90.57±3.15% after thawing (p<0.05). From this study, it can be clearly concluded that, after the slaughtering of bulls, the spermatozoa can be recovered from the epididymis and cryopreserved, maintaining an excellent rate of sperm viability and quality after thawing.

Keywords: bovine semen, epididymis, cryopreservation, fertility assessment

Procedia PDF Downloads 81
1377 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 526
1376 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation

Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno

Abstract:

Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.

Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression

Procedia PDF Downloads 123
1375 Some Observations on the Preparation of Zinc Hydroxide Nitrate Nanoparticles

Authors: Krasimir Ivanov, Elitsa Kolentsova, Nguyen Nguyen, Alexander Peltekov, Violina Angelova

Abstract:

The nanosized zinc hydroxide nitrate has been recently estimated as perspective foliar fertilizer, which has improved zinc solubility, but low phytotoxicity, in comparison with ZnO and other Zn containing compounds. The main problem is obtaining of stable particles with dimensions less than 100 nm. This work studies the effect of preparation conditions on the chemical compositions and particle size of the zinc hydroxide nitrates, prepared by precipitation. Zn(NO3)2.6H2O and NaOH with concentrations, ranged from 0.2 to 3.2M and the initial OH/Zn ratio from 0.5 to 1.6 were used at temperatures from 20 to 60 °C. All samples were characterized in detail by X-ray diffraction, scanning electron microscopy, differential thermal analysis and ICP. Stability and distribution of the zinc hydroxide nitrate particles were estimated too.

Keywords: zinc hydroxide nitrate, nanoparticles, preparation, foliar fertilizer

Procedia PDF Downloads 340
1374 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 313
1373 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste

Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.

Keywords: condensation, radioactive liquid waste, solidification, STRAD project

Procedia PDF Downloads 153
1372 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array

Authors: P. Behera, K. K. Singh, D. K. Saini, M. De

Abstract:

Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.

Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂

Procedia PDF Downloads 138
1371 Phytochemical Study and Bioinsecticidal Effect of the Crude Extract from the Plant Artemisia Judaica

Authors: Fatma Acheuk, Idir Bitam, Leila Bendifallah, Malika Ramdani, Fethia Barika

Abstract:

Phytochemical study of the plant Artemisia judaica showed the presence of various groups of natural products: saponins, tannins, coumarins, flavonoids, carbohydrates, and reducer compounds. However alkaloids are present as traces. The crude ethanol extract of the test plant presented significant insecticidal activity on mosquito larvae in stage I, II, and III. The LD50 highlighted the excellent insecticidal effect of the tested extract. Similarly, the LT50 are achieved early with high doses. The results obtained are encouraging and suggest the possibility of using the secondary metabolites of this plant such as bio-insecticide.

Keywords: Atamisia judaica, crud extract, mosquito, insecticidal activity

Procedia PDF Downloads 584
1370 Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract

Authors: Tawqeer Ali Syed, Prakash Chandra

Abstract:

This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds.

Keywords: MTT assay, antileishmanial, cell viability, Nigella sativa

Procedia PDF Downloads 206