Search results for: atomic force macroscopic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2819

Search results for: atomic force macroscopic

1649 The Employer Brand as Perceived by Salespeople: A Study Based on Glassdoor Reviews

Authors: Juliet F. Poujol, Jeff John Tanner, Christophe Fournier

Abstract:

Employers desire a favorable brand as an employer. This research considers whether motivation theory is applied to identify universally desirable employer brand elements. Based on data from a website where employees give their opinion about their employer (N=200), this research examines what salespeople found positive and negative about their job. Results show that traditional motivators like opportunities of advancement, and 'hygiene' factors such as benefits and work conditions are a source of satisfaction for salespeople. We also found differences by sectors. Implications are related to sales force recruitment and management.

Keywords: employer brand, motivation, qualitative study, salespeople

Procedia PDF Downloads 370
1648 MicroRNA in Bovine Corpus Luteum during Early Pregnancy

Authors: Rreze Gecaj, Corina Schanzenbach, Benedikt Kirchner, Michael Pfaffl, Bajram Berisha

Abstract:

The maintenance of corpus lutem (CL) during early pregnancy in cattle is a critical and multifarious process. A luteotrophic mechanism originating from the embryo is widely accepted as the triggering signal for the CL maintenance. In the cattle, it is the interferon-tau (IFNT) secretion form conceptus that prevents CL regression and ensures progesterone production for the establishment of pregnancy. In addition to endocrine and paracrine signals, microRNA (miRNA) can also support CL sustainability during early pregnancy. MiRNA are small non-coding nucleic acids that regulate gene expression post-transcriptionally and are shown to be involved in the modulation of CL function. However, the examination of miRNAs in corpus luteum function at the early pregnancy still remains largely uncovered. This study aims at profiling the expression of miRNA in CL during the early pregnancy in cattle by comparing it with the CL form late cycle and with the regressed CL. Corpora lutea were assigned in two different groups during the cycle (C13 group, late CL: days 13-18 and C18, regressed CL group: day >18) and during the early pregnancy (group P: 1-2 month). The estrous cycle was determined by macroscopic examination and to age the fetus crown-rump length measurement was applied. A total of 9 corpora lutea from individual animals were included in the study, three corpora lutea for each group. MiRNAs population was profiled using small RNA next-generation sequencing and biologically significant miRNAs were evaluated for their differential expression using the DESeq2-methodology. We show that 6 differentially expressed miRNAs (bta-mir-2890, -2332, -2441-3p, -148b, -1248 and -29c) are common to both comparisons, P vs C13 and P vs C18. While for each stage individually we have identified unique miRNAs differentially expressed only for the given comparison. bta-miR-23a and -769 were unique miRNAs differentially expressed in P vs C13, whereas forty-four unique miRNAs were identified as differentially expressed in P vs C18. These data confirm that miRNAs are highly abundant in luteal tissue during early pregnancy and potentially regulate the CL maintenance at this stage of fetus development.

Keywords: bovine, corpus luteum, microRNA, pregnancy, RNA-Seq

Procedia PDF Downloads 249
1647 Association Type 1 Diabetes and Celiac Disease in Adult Patients

Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) and type 1 diabetes mellitus (T1D) are complex disorders with shared genetic components. The association between CD and T1D has been reported in many pediatric series. The aim of our study is to describe the epidemiological, clinical and evolutive characteristics of adult patients presenting this association. Material and Methods: This is a retrospective study including patients diagnosed with CD and T1D, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and June 2016. Results: Among 57 patients with CD, 15 patients had also T1D (26.3%). There are 11 women and 4 men with a median age of 27 years (16-48). All patients developed T1D prior to the diagnosis of CD with an average duration of 47 months between the two diagnosis (6 months-5 years). CD was revealed by recurrent abdominal pain in 11 cases, diarrhea in 10 cases, bloating in 8 cases, constipation in 6 cases and vomiting in 2 cases. Three patients presented cycle disorders with secondary amenorrhea in 2 patients. Anti-Endomysium, anti-transglutaminase and Anti-gliadin antibodies were positive respectively in 57, 54 and 11 cases. The biological tests revealed anemia in 10 cases, secondary to iron deficiency in 6 cases and folate and vitamin B12 deficiency in 4 cases, hypoalbuminaemia in 4 cases, hypocalcemia in 3 cases and hypocholesterolemia in 1 patient. Upper gastrointestinal endoscopy showed an effacement of the folds of the duodenal mucosa in 6 cases and a congestive duodenal mucosa in 3 cases. The macroscopic appearance was normal in the others cases. Microscopic examination showed an aspect of villous atrophy in 57 cases, which was partial in 10 cases and total in 47 cases. After an average follow-up of 3 years 2 months, the evolution was favorable in all patients under gluten-free diet with the necessity of less important doses of insulin in 10 patients. Conclusion: In our study, the prevalence of T1D in adult patients with CD was 26.3%. This association can be attributed to overlapping genetic HLA risk loci. In recent studies, the role of gluten as an important player in the pathogenesis of CD and T1D has been also suggested.

Keywords: celiac disease, gluten, prevalence, type 1 diabetes

Procedia PDF Downloads 241
1646 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 440
1645 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 265
1644 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 332
1643 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound

Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui

Abstract:

We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.

Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro

Procedia PDF Downloads 301
1642 Design and Development of a Prototype Vehicle for Shell Eco-Marathon

Authors: S. S. Dol

Abstract:

Improvement in vehicle efficiency can reduce global fossil fuels consumptions. For that sole reason, Shell Global Corporation introduces Shell Eco-marathon where student teams require to design, build and test energy-efficient vehicles. Hence, this paper will focus on design processes and the development of a fuel economic vehicle which satisfying the requirements of the competition. In this project, three components are designed and analyzed, which are the body, chassis and powertrain of the vehicle. Optimum design for each component is produced through simulation analysis and theoretical calculation in which improvement is made as the project progresses.

Keywords: energy efficient, drag force, chassis, powertrain

Procedia PDF Downloads 316
1641 The Extraction and Stripping of Hg(II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg(II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a counter current flow. Samples were kept in the outlet of feed and stripping solution for 1 hour and characterized concentration of Hg(II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg(II) were 98% and 44.2%, respectively.

Keywords: Hg(II), hollow fiber contactor, produced water, wastewater treatment

Procedia PDF Downloads 393
1640 Cartography through Picasso’s Eyes

Authors: Desiree Di Marco

Abstract:

The aim of this work is to show through the lens of art first which kind of reality was the one represented through fascist maps, and second to study the impact of the fascist regime’s cartography (FRC) on observers eye’s. In this study, it is assumed that the FRC’s representation of reality was simplified, timeless, and even a-spatial because it underrates the concept of territoriality. Cubism and Picasso’s paintings will be used as counter-examples to mystify fascist cartography’s ideological assumptions. The difference between the gaze of an observer looking at the surface of a fascist map and the gaze of someone observing a Picasso painting is impressive. Because there is always something dark, hidden, behind and inside a map, the world of fascist maps was a world built starting from the observation of a “window” that distorted reality and trapped the eyes of the observers. Moving across the map, they seem as if they were hypnotized. Cartohypnosis is the state in which the observer finds himself enslaved by the attractive force of the map, which uses a sort of “magic” geography, a geography that, by means of symbolic language, never has as its primary objective the attempt to show us reality in its complexity, but that of performing for its audience. Magical geography and hypnotic cartography in fascism blended together, creating an almost mystical, magical relationship that demystified reality to reduce the world to a conquerable space. This reduction offered the observer the possibility of conceiving new dimensions: of the limit, of the boundary, elements with which the subject felt fully involved and in which the aesthetic force of the images demonstrated all its strength. But in the early 20th century, the combination of art and cartography gave rise to new possibilities. Cubism which, more than all the other artistic currents showed us how much the observation of reality from a single point of view falls within dangerous logic, is an example. Cubism was an artistic movement that brought about a profound transformation in pictorial culture. It was not only a revolution of pictorial space, but it was a revolution of our conception of pictorial space. Up until that time, men and women were more inclined to believe in the power of images and their representations. Cubist painters rebelled against this blindness by claiming that art must always offer an alternative. Indeed the contribution of this work is precisely to show how art can be able to provide alternatives to even the most horrible regimes and the most atrocious human misfortunes. It also enriches the field of cartography because it "reassures" it by showing how much good it can be for cartography if also for other disciplines come close. Only in this way researcher can increase the chances for the cartography of a greater diffusion at the academic level.

Keywords: cartography, Picasso, fascism, culture

Procedia PDF Downloads 55
1639 The Use of Social Media in the Recruitment Process as HR Strategy

Authors: Seema Sant

Abstract:

In the 21st century were four generation workforces are working, it’s crucial for organizations to build talent management strategy, as tech-savvy Gen Y has entered the work force. They are more connected to each other than ever – through the internet enabled Social media networks Social media has become important in today’s world. The users of such Social media sites have increased in multiple. From sharing their opinion for a brand/product to researching a company before going for an interview, making a conception about a company’s culture or following a Company’s updates due to sheer interest or for job vacancy, Work force today is constantly in touch with social networks. Thus corporate world has rightly realized its potential uses for business purpose. Companies now use social media for marketing, advertising, consumer survey, etc. For HR professionals, it is used for networking and connecting to the Talent pool- through Talent Community. Social recruiting is the process of sourcing or hiring candidates through the use of social sites such as LinkedIn, Facebook Twitter which provide them with an array of information about potential employee; this study represents an exploratory investigation on the role of social networking sites in recruitment. The primarily aim is to analyze the factors that can enhance the channel of recruitment used by of the recruiter with specific reference to the IT organizations in Mumbai, India. Particularly, the aim is to identify how and why companies use social media to attract and screen applicants during their recruitment processes. It also examines the advantages and limitations of recruitment through social media for employers. This is done by literature review. Further, the papers examine the recruiter impact and understand the various opportunities which have created due to technology, thus, to analyze and examine these factors, both primary, as well as secondary data, are collected for the study. The primary data are gathered from five HR manager working in five top IT organizations in Mumbai and 100 HR consultants’ i.e., recruiter. The data was collected by conducting a survey and supplying a closed-ended questionnaire. A comprehension analysis of the study is depicted through graphs and figures. From the analysis, it was observed that there exists a positive relationship between the level of employee recruited through social media and their organizational commitment. Finally the findings show that company’s i.e. recruiters are currently using social media in recruitment, but perhaps not as effective as they could be. The paper gives recommendations and conditions for success that can help employers to make the most out of social media in recruitment.

Keywords: recruitment, social media, social sites, workforce

Procedia PDF Downloads 170
1638 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 134
1637 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics

Authors: J. Cecrdle

Abstract:

This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modelling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.

Keywords: aeroelasticity, flutter, propeller blade force, whirl flutter

Procedia PDF Downloads 524
1636 Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner.

Keywords: helical tape, divergent fluid flow, temperature distribution, swirl flow, CFD

Procedia PDF Downloads 438
1635 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 44
1634 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties

Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich

Abstract:

Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.

Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis

Procedia PDF Downloads 97
1633 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: bolt self-loosening, contact state, finite element method, FEM, helical thread modeling

Procedia PDF Downloads 191
1632 Critical Analysis of Different Actuation Techniques for a Micro Cantilever

Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri

Abstract:

The objective of this work is to carry out a critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a microcantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, they help in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation are done by considering the microcantilever of same dimensions as an actuator using all the above-mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in the micro domain.

Keywords: actuation techniques, microswitch, micro actuator, microsystems

Procedia PDF Downloads 392
1631 Experimental Study of Iron Metal Powder Compacting by Controlled Impact

Authors: Todor N. Penchev, Dimitar N. Karastoianov, Stanislav D. Gyoshev

Abstract:

For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force.

Keywords: powder metallurgy, impact, iron powder compacting, rocket engine

Procedia PDF Downloads 511
1630 Assessment of Some Heavy Metals (Manganese, Copper, Nickel and Zinc) in Muscle and Liver of the African Catfish (Clarias gariepinus) in Ilushi River, Nigeria

Authors: Joshua I. Izegaegbe, Femi F. Oloye, Catherine E. Nasiru

Abstract:

This study determined the level of manganese, zinc, copper, and nickel in the liver and muscle of the African Catfish, Clarias gariepinus from Ilushi River, Edo State, Nigeria with a view to determining the extent of contamination. Heavy metal determination of digested fish samples was done using the atomic absorption spectrophotometric method. The results show that the muscles and livers were contaminated to varying levels with the presence of some non-metallic elements. The heavy metal load revealed that zinc had the highest mean concentration of 0.217±0.008µg/g in liver and 0.130±0.006µg/g in muscle, while copper recorded the least concentration in liver 0.063±0.004µg/g and 0.027±0.003µg/gin muscle. The distribution of the heavy metals in the muscles and livers of Clarias gariepinus showed significant variations and the results also revealed that the concentration of heavy metals (Zn, Cu,Ni and Mn) found in the liver was higher than those found in the muscle. This indicates that the liver is a better accumulator of heavy metal in Clarias gariepinus than the muscles. On comparison with WHO/FAO/FEPA/USFDA standards, the study shows that the concentrations of heavy metals in liver and muscle were within permissible limits safe for human consumption.

Keywords: clarias gariepinus, heavy metals, liver, muscle

Procedia PDF Downloads 203
1629 Nose Macroneedling Tie Suture Hidden Technique

Authors: Mohamed Ghoz, Hala Alsabeh

Abstract:

Context: Macroscopic Nose Macroneedling (MNM) is a new non-surgical procedure for lifting and tightening the nose. It is a tissue-non-invasive technique that uses a needle to create micro-injuries in the skin. These injuries stimulate the production of collagen and elastin, which results in the tightening and lifting of the skin. Research Aim: The research aim of this study was to investigate the efficacy and safety of MNM for the treatment of nasal deformities. Methodology A total of 100 patients with nasal deformities were included in this study. The patients were randomly assigned to either the MNM group or the control group. The MNM group received a single treatment of MNM, while the control group received no treatment. The patients were evaluated at baseline, 6 months, and 12 months after treatment. Findings: The results of this study showed that MNM was effective in improving the appearance of the nose in patients with nasal deformities. At 6 months after treatment, the patients in the MNM group had significantly improved nasal tip projection, nasal bridge height, and nasal width compared to the patients in the control group. The improvements in nasal appearance were maintained at 12 months after treatment. Theoretical Importance: The findings of this study provide support for the use of MNM as a safe and effective treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities. Data Collection: Data was collected from the patients using a variety of methods, including clinical assessments, photographic assessments, and patient-reported outcome measures. Analysis Procedures: The data was analyzed using a variety of statistical methods, including descriptive statistics, inferential statistics, and meta-analysis. Question Addressed: The research question addressed in this study was whether MNM is an effective and safe treatment for nasal deformities. Conclusion: The findings of this study suggest that MNM is an effective and safe treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities.

Keywords: nose, surgery, tie, suture

Procedia PDF Downloads 62
1628 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 120
1627 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 73
1626 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: input performance, mobile device, slim keyboard, tactile feedback

Procedia PDF Downloads 291
1625 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials

Authors: Ariadna Manresa, Ines Ferrer

Abstract:

Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.

Keywords: biomaterial, biopolymer, micro injection molding, ultrasound

Procedia PDF Downloads 275
1624 Gradations in Concentration of Heavy and Mineral Elements with Distance and Depth of Soil in the Vicinity of Auto Mechanic Workshops in Sabon Gari, Kaduna State, Nigeria

Authors: E. D. Paul, H. Otanwa, O. F. Paul, A. J. Salifu, J. E. Toryila, C. E. Gimba

Abstract:

The concentration levels of six heavy metals (Cd, Cr, Fe, Ni, Pb, and Zn) and two mineral elements (Ca and Mg) were determined in soil samples collected from the vicinity of two auto mechanic workshops in Sabon-Gari, Kaduna state, Nigeria, using Atomic Absorption Spectrometry (AAS), in order to compare the gradation of their concentrations with distance and depth of soil from the workshop sites. At site 1, concentrations of lead, chromium, iron, and zinc were generally found to be above the World Health Organization limits, while those of Nickel and Cadmium fell within the limits. Iron had the highest concentration with a range of 176.274 ppm to 489.127 ppm at depths of 5 cm to 15 cm and a distance range of 5 m to 15 m, while the concentration of cadmium was least with a range of 0.001 ppm to 0.008 ppm at similar depth and distance ranges. In addition, there was more of calcium (11.521 ppm to 121.709 ppm), in all the samples, than magnesium (11.293 ppm to 21.635 ppm). Similar results were obtained for site II. The concentrations of all the metals analyzed showed a downward gradient with an increase in depth and distance from both workshop sites except for iron and zinc at site 2. The immediate and remote implications of these findings on the biota are discussed.

Keywords: AAS, heavy metals, mechanic workshops, soil, variation

Procedia PDF Downloads 485
1623 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 201
1622 Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films

Authors: R. Vidyasagar, G. L. S. Vilela, B. M. Guiraldelli, A. B. Henriques, J. Moodera

Abstract:

Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains.

Keywords: optical transitions, thin films, ferrimagnetic insulator, strains

Procedia PDF Downloads 32
1621 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 284
1620 Distribution Patterns of Trace Metals in Soils of Gbongan-Odeyinka-Orileowu Area, Southwestern Nigeria

Authors: T. A. Adesiyan, J. A. Adekoya A. Akinlua, N. Torto

Abstract:

One hundred and eighty six in situ soil samples of the B–horizon were collected around Gbongan–Odeyinka-Orileowu area, southwestern Nigeria, delineated by longitude 4°15l and 4°30l and latitude 7°14l and 7°31 for a reconnaissance geochemical soil survey. The objective was to determine the distribution pattern of some trace metals in the area with a view to discovering any indication of metallic mineralization. The samples were air–dried and sieved to obtain the minus 230 µ fractions which were used for pH determinations and subjected to hot aqua regia acid digestion. The solutions obtained were analyzed for Ag, As, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, and Zn using atomic absorption spectrometric methods. The resulting data were subjected to simple statistical treatment and used in preparing distribution maps of the elements. With these, the spatial distributions of the elements in the area were discussed. The pH of the soils range from 4.70 to 7.59 and this reflects the geochemical distribution patterns of trace metals in the area. The spatial distribution maps of the elements showed similarity in the distributions of Co, Cr, Fe, Ni, Mn and Pb. This suggests close associations between these elements none of which showed any significant anomaly in the study. The associations might be due to the scavenging actions of Fe–Mn oxides on the elements. Only Ag, Au and Sn on one hand and Zn on the other hand showed significant anomalies, which are thought to be due to mineralization and anthropogenic activities respectively.

Keywords: distribution, metals, Gbongan, Nigeria, mineralization anthropogenic

Procedia PDF Downloads 311