Search results for: 4 dioxane concentrations
1571 Growing Vetiver (Chrysopogon zizanioides L.) on Contaminated Soils with Heavy Metals in Bulgaria
Authors: Violina Angelova, Huu Q. Lee
Abstract:
A field study was conducted to evaluate the efficacy of Vetiver (Chrysopogon zizanioides L.) for phytoremediation of contaminated soils. The experiment was performed on agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.5, 3.5, and 15 km) from the source of pollution. The concentrations of Pb, Zn, and Cd in vetiver (roots and leaves) were determined. Correlations between the content of the heavy metal mobile forms extracted with DTPA and their content in the roots and leaves of the Vetiver have been established. The Vetiver is tolerant to heavy metals and can be grown on soils contaminated with heavy metals. Plants are characterized by low ability to absorb and accumulate Pb, Cd, and Zn and have no signs of toxicity (chlorosis and necrosis) at 36.8 mg/kg Cd, 1158.8 mg/kg Pb and 1526.2 mg/kg Zn in the soil. Vetiver plants can be classified as Pb, Cd and Zn excluder, therefore, this plant has the suitable potential for the phytostabilization of heavy metal contaminated soils. Acknowledgements: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI 04/9).Keywords: contaminated soils, heavy metals, phytoremediation, vetiver
Procedia PDF Downloads 2301570 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 661569 Determination of the Inhibitory Effects of N-Methylpyrrole Derivatives on Glutathione Reductase Enzyme
Authors: Esma Kocaoglu, Oktay Talaz, Huseyin Cavdar, Murat Senturk, Deniz Eki̇nci̇
Abstract:
Glutathione reductase (GR) is a crucial antioxidant enzyme which is responsible for the maintenance of the antioxidant GSH (glutathione) molecule. Antimalarial effects of some chemical molecules are attributed to their inhibition of GR; thus inhibitors of this enzyme are expected to be promising candidates for the treatment of malaria. In this work, GR inhibitory properties of N-Methylpyrrole derivatives are reported. Firstly, GR was purified by means of affinity chromatography using 2’,5’-ADP-Sepharose 4B as ligand. Enzymatic activity was measured by Beutler’s method. Synthesis of the compounds was approved by thin layer chromatography and column chromatography. Different inhibitor concentrations were used and all compounds were tested in triplicate at each concentration used. It was found that all compounds have better inhibitory activity than the strong GR inhibitor N,N-bis(2-chloroethyl)-N-nitrosourea, especially three molecules, 8m, 8n, and 8q, are the best among them with low micromolar I₅₀ values. Findings of our study indicate that these Schiff base derivatives are strong GR inhibitors which can be used as leads for designation of novel antimalaria candidates.Keywords: glutathione reductase, antimalaria, inhibitor, enzyme
Procedia PDF Downloads 2701568 Antidiabetic and Antihyperlipaemic Effects of Aqueous Neem (Azadirachta Indica) Extract on Alloxan Diabetic Rabbits
Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed
Abstract:
Extracts of various plants material capable of decreasing blood sugar have been tested in experimental animal models and their effects confirmed. Neem or Margose (Azadirachta Indica) is an indigenous plant believed to have antiviral, antifungal, antidiabetic and many other properties. This paper deals with a comparative study of the effect of aqueous Neem leaves extract alone or in combination with glibenclamide on alloxan diabetic rabbits. Administration of crude aqueous Neem extract (CANE) alone (1.5 ml/kg/day), as well as the combination of CANE (1.5 ml/kg/day) with glibenclamide (0.25 mg/kg/day) significantly, decreased (P<0.05) the concentrations of serum lipids, blood glucose and lipoprotein VLDL(very low-density lipoproteins) and LDL(low-density lipoproteins) but significantly increased (P<0.05) the concentration of HDL(high-density lipoprotein). The change was observed significantly greater when the treatment was given in combination of CANE and glibenclamid than with CANE alone.Keywords: neem, hypoglycemic, hypolipidemic, cholesterol
Procedia PDF Downloads 2651567 Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control
Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines
Abstract:
This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant “Lutensol AO7 and TX-114” (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Фc). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Фc. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.Keywords: extraction, cloud point, non ionic surfactant, bezanyl green
Procedia PDF Downloads 1261566 Phase Diagrams and Liquid-Liquid Extraction in Aqueous Biphasic Systems Formed by Polyethylene Glycol and Potassium Sodium Tartrate at 303.15 K
Authors: Amanda Cristina de Oliveira, Elias de Souza Monteiro Filho, Roberta Ceriani
Abstract:
Liquid-liquid extraction in aqueous two-phase systems (ATPSs) constitutes a powerful tool for purifying bio-materials, such as cells, organelles, proteins, among others. In this work, the extraction of the bovine serum albumin (BSA) has been studied in systems formed by polyethylene glycol (PEG) (1500, 4000, and 6000 g.mol⁻¹) + potassium sodium tartrate + water at 303.15°K. Phase diagrams were obtained by turbidimetry and Merchuk’s method (1998). The experimental tie-lines were described using the Othmer-Tobias and Bancroft correlations. ATPSs were correlated with the nonrandom two-liquid (NRTL) model. The results were considered excellent according to global root-mean-square deviations found which were between 0,72 and 1,13%. The concentrations of the proteins in each phase were determined by spectrophotometry at 280 nm, finding partition efficiencies greater than 71%.Keywords: aqueous two phases systems, bovine serum albumin , liquid-liquid extraction, polyethylene glycol
Procedia PDF Downloads 1581565 Inhibitory Effects of Ambrosia trifida L. on the Development of Root Hairs and Protein Patterns of Radicles
Authors: Ji-Hyon Kil, Kew-Cheol Shim, Kyoung-Ae Park, Kyoungho Kim
Abstract:
Ambrosia trifida L. is designated as invasive alien species by the Act on the Conservation and Use of Biodiversity by the Ministry of Environment, Korea. The purpose of present paper was to investigate the inhibitory effects of aqueous extracts of A.trifida on the development of root hairs of Triticum aestivum L., and Allium tuberosum Rottler ex Spreng and the electrophoretic protein patterns of their radicles. The development of root hairs was inhibited by increasing of aqueous extract concentrations. Through SDS-PAGE, the electrophoretic protein bands of extracted proteins from their radicles were appeared in controls, but protein bands of specific molecular weight disappeared or weakened in treatments. In conclusion, inhibitory effects of A. trifida made two receptor species changed morphologically, and at the molecular level in early growth stage.Keywords: Ambrosia trifida L., invasive alien species, inhibitory effect, root hair, electrophoretic protein, radicle
Procedia PDF Downloads 3611564 Pre-Soaking Application of Salicylic Acid on Four Wheat Cultivars under Saline Concentrations
Authors: Saad M. Howladar, Mike Dennett
Abstract:
The effect of salinity (0-200 mMNaCl) on wheat growth (leaf and tiller numbers, and fresh and dry weights) underseed soaking (6 and 24 hs) insalicylic acid (SA) was investigated. The impact of salinity was less pronounced in salt tolerant cultivars (Sakha 93 and S24) than Paragon and S24. Chlorophyll content was increased as a response to salinity stress. It was raised in 100 mMNaCl more than 200 mMNaCl. The same trend was found in 24 hs soaking, except chlorophyll content in Paragon and S24 under 200 mMNaCl was more than 100 mMNaCl. SA application induced a positive effect on growth parameters in some cultivars, particularly Paragon under saline and non-saline condition. Soaking for 6 hs was more effective than 24 hs soaking, especially in Paragon and Sakha 93. SA supply caused a slight effect on chlorophyll content but this was not significant and there was no significant difference between both soaking hs. The effect of SA on growth parameters and chlorophyll content depends on cultivar genotype and SA concentration.Keywords: salinity, salicylic acid, growth parameters, chlorophyll content, wheat cultivars
Procedia PDF Downloads 5471563 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India
Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka
Abstract:
In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution
Procedia PDF Downloads 2131562 The Role of P2X7 Cytoplasmic Anchor in Inflammation
Authors: Federico Cevoli
Abstract:
Purinergic P2X7 receptors (P2X7R) are ligand-gated non-selective cation channels involved in several physiological and pathological processes. They are particularly promising pharmacological targets as they are present in an increasing number of different cells types. P2X7R activation is triggered following elevated concentrations of extracellular ATP, similarly to those observed in tissues injury, chronic inflammation and T-cell activation, as well as in the scrambling of phospholipids leading to membrane blebbing and apoptosis. Another hallmark of P2X7 is cell permeabilization, commonly known as “macropore” formation allowing the passage of nanometer-sized molecules up to 900Da. Recently, full-length P2X7 Cryo-EM structures revealed unique functional sites, including two cytoplasmic domains - the cytoplasmic "anchor" and "ballast". To date, the molecular units/complex by which P2X7R exerts its pathophysiological functions are unknown. Using custom-made cell-penetrating HIV-1 TAT peptides, we show for the first-time potential implications of P2X7 cytoplasmic anchor in the regulation of caspase3/7 activation as well as TNFα regulation.Keywords: P2X7R, immunology, TAT-peptide, cell death
Procedia PDF Downloads 1371561 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 511560 Comparison of Concentration of Heavy Metals in PM2.5 Analyzed in Three Different Global Research Institutions Using X-Ray Fluorescence
Authors: Sungroul Kim, Yeonjin Kim
Abstract:
This study was conducted by comparing the concentrations of heavy metals analyzed from the same samples with three X-Ray fluorescence (XRF) spectrometer in three different global research institutions, including PAN (A Branch of Malvern Panalytical, Seoul, South Korea), RTI (Research Triangle Institute, NC, U.S.A), and aerosol laboratory in Harvard University, Boston, U.S.A. To achieve our research objectives, the indoor air filter samples were collected at homes (n=24) of adults or child asthmatics then analyzed in PAN followed by Harvard University and RTI consecutively. Descriptive statistics were conducted for data comparison as well as correlation and simple regression analysis using R version 4.0.3. As a result, detection rates of most heavy metals analyzed in three institutions were about 90%. Of the 25 elements commonly analyzed among those institutions, 16 elements showed an R² (coefficient of determination) of 0.7 or higher (10 components were 0.9 or higher). The findings of this study demonstrated that XRF was a useful device ensuring reproducibility and compatibility for measuring heavy metals in PM2.5 collected from indoor air of asthmatics’ home.Keywords: heavy metals, indoor air quality, PM2.5, X-ray fluorescence
Procedia PDF Downloads 2001559 Vitrification-Based Cryopreservation of Phalaenopsis cornu-Cervi (Breda) Blume & Rchb. f. Protocorms
Authors: Suphat Rittirat, Sutha Klaocheed, Somporn Prasertsongskun, Kanchit Thammasiri
Abstract:
Protocorms of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. f. were successfully cryopreserved using a vitrification method. Two-month old protocorms at GI 4 stage were precultured in liquid MS medium supplemented with different concentrations of sucrose (0.3, 0.5, 0.7, 0.9 and 1.2 M) at 25±1°C for 2 days on an orbital shaker at 110 rpm. The protocorms were treated with loading solution (2 M glycerol plus 0.4 M sucrose) for 20 minutes at 25±1°C. Then, the protocorms were sufficiently dehydrated with vitrification solution (plant vitrification solution 2, PVS2) for various times (0, 30, 60, 90 and 120 minutes) at 25±1°C and stored in liquid nitrogen for 1 day. After rapid thawing in water bath at 40°C for 2 minutes, the explants were washed by MS liquid medium containing 0.5 ml of 1.2 M sucrose for 20 minutes. The results shown that the protocorms were precultured in liquid MS medium containing 0.5 M sucrose and dehydrated with vitrification solution for 60 minutes had the highest survival percentage of protocorm at 31±1.0 % as measured by Evan’s blue. No survival rate of protocorms was found without vitrification treatments.Keywords: protocorms, cryopreservation, Phalaenopsis cornu-cervi, vitrification
Procedia PDF Downloads 3631558 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 3041557 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate
Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra
Abstract:
In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor
Procedia PDF Downloads 2581556 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 3821555 Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector
Authors: A. Maouassi, A. Beghidja, S. Daoud, N. Zeraibi
Abstract:
This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number.Keywords: CFD, forced convection, nanofluid, solar flat plate collector efficiency, TiO₂ nanoparticles
Procedia PDF Downloads 1601554 The Effect of Topically Aloe vera Gel on Cutaneous Wound Healing
Authors: Nasrin Takzaree, Abbas Hadjiakhoondi, Gholamreza Hassanzadeh, Mohammadreza Rouini
Abstract:
Background: Wound healing and repair is a normal reaction to injury which results in restoration of tissue integrity. Rate of wound healing is affected by various factors, such as nutrition, vitamins, hormones. Method: The aim of this study was to evaluate the effect of Aloe vera mucilage on wound healing. Mucilage was extracted from leaves, then homogenize, filtered and concentrated. Some creams were prepared with different concentrations of mucilage 95%. In this study 63 male albino rats, weighing 250–300 gr were used. Incision wounds (10 mm) were made on the shaved and cleaned back of rat necks. Wounds of case groups (group I & group II) were treated with aloe vera mucilage which were administered one time daily another group two times daily. Results: In order to evaluate wound healing, various parameters such as wound diameter, percentage of healing, duration of healing. Were considered. Conclusion: The results of this study confirmed that aloe vera mucilage is a potent healing and can be used in wound healing process.Keywords: Aloe vera, wound healing, open skin wound, healing process
Procedia PDF Downloads 3491553 Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process
Authors: Siti Nurkhamidah, Yeni Rahmawati, Fadlilatul Taufany, Eamor M. Woo, I Made P. A. Merta, Deffry D. A. Putra, Pitsyah Alifiyanti, Krisna D. Priambodo
Abstract:
Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed.Keywords: carbon nanotube, cellulose acetate, desalination, membrane, PEG
Procedia PDF Downloads 3211552 Synthesis, Characterization and Cytotoxic Effect of Eu2O3-doped ZnO Nanostructures
Authors: Otilia R. Vasile, Florina C. Ilie, Irina F. Nicoara, Cristina D. Ghitulica, Roxana Trusca, Ovidiu Oprea, Vasile A. Surdu, Bogdan S. Vasile, Ecaterina Adronescu
Abstract:
In this work ZnO nanostructures (nanopowders and nanostars) have been synthesized via a simple sol-gel method. The used methods for synthesizing the nanostructures involve two steps as follows: (1) precipitation of zinc acetate precursor for the synthesis of ZnO nanopowders and zinc chloride precursor for the synthesis of ZnO nanostars and (2) addition of Eu2O3 in different concentrations (1%, 3%, and 5%) using europium acetate as precursor. Detailed crystalline parameters for each of the synthetized species were analysed using X-ray diffraction. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowders and nanostars were investigated by electron microscopy. TEM investigations have shown an average particle size range from 23 to 29 nm and polyhedral and spherical morphology with tendency to form aggregates for nanopowders. For nanostars structures, a star-like morphology could be observed. Cytotoxicity tests on MG-63 cell lines were also performed. Photocatalytic activity of ZnO nanopowders have reached higher values compared to ZnO nanostars.Keywords: cytotoxicity, photocatalytic activity, TEM, ZnO
Procedia PDF Downloads 5611551 The Effect of Photochemical Smog on Respiratory Health Patients in Abuja Nigeria
Authors: Christabel Ihedike, John Mooney, Monica Price
Abstract:
Summary: This study aims to critically evaluate effect of photochemical smog on respiratory health in Nigeria. Cohort of chronic obstructive pulmonary disease (COPD) patients was recruited from two large hospitals in Abuja Nigeria. Respiratory health questionnaires, daily diaries, dyspnoea scale and lung function measurement were used to obtain health data and investigate the relationship with air quality data (principally ozone, NOx and particulate pollution). Concentrations of air pollutants were higher than WHO and Nigerian air quality standard. The result suggests a correlation between measured air quality and exacerbation of respiratory illness. Introduction: Photochemical smog is a significant health challenge in most cities and its effect on respiratory health is well acknowledged. This type of pollution is most harmful to the elderly, children and those with underlying respiratory disease. This study aims to investigate impact of increasing temperature and photo-chemically generated secondary air pollutants on respiratory health in Abuja Nigeria. Method and Result: Health data was collected using spirometry to measure lung function on routine attendance at the clinic, daily diaries kept by patients and information obtained using respiratory questionnaire. Questionnaire responses (obtained using an adapted and internally validated version of St George’s Hospital Respiratory Questionnaire), shows that ‘time of wheeze’ showed an association with participants activities: 30% had worse wheeze in the morning: 10% cannot shop, 15% take long-time to get washed, 25% walk slower, 15% if hurry have to stop and 5% cannot take-bath. There was also a decrease in Forced expiratory volume in the first second and Forced Vital Capacity, and daily change in the afternoon–morning may be associated with the concentration level of pollutants. Also, dyspnoea symptoms recorded that 60% of patients were on grade 3, 25% grade 2 and 15% grade 1. Daily frequency of the number of patients in the cohort that cough /brought sputum is 78%. Air pollution in the city is higher than Nigerian and WHO standards with NOx and PM10 concentrations of 693.59ug/m-3 and 748ugm-3 being measured respectively. The result shows that air pollution may increase occurrence and exacerbation of respiratory disease. Conclusion: High temperature and local climatic conditions in urban Nigeria encourages formation of Ozone, the major constituent of photochemical smog, resulting also in the formation of secondary air pollutants associated with health challenges. In this study we confirm the likely potency of the pattern of secondary air pollution in exacerbating COPD symptoms in vulnerable patient group in urban Nigeria. There is need for better regulation and measures to reduce ozone, particularly when local climatic conditions favour development of photochemical smog in such settings. Climate change and likely increasing temperatures add impetus and urgency for better air quality standards and measures (traffic-restrictions and emissions standards) in developing world settings such as Nigeria.Keywords: Abuja-Nigeria, effect, photochemical smog, respiratory health
Procedia PDF Downloads 2241550 Enrichment of the Antioxidant Activity of Decaffeinated Assam Green Tea by Herbal Plant: A Synergistic Effect
Authors: Abhijit Das, Runu Chakraborty
Abstract:
Tea is the most widely consumed beverage aside from water; it is grown in about 30 countries with a per capita worldwide consumption of approximately 0.12 liter per year. Green tea is of growing importance with its antioxidant contents associated with its health benefits. The various extraction methods can influence the polyphenol concentrations of green tea. The purpose of the study was to quantify the polyphenols, flavonoid and antioxidant activity of both caffeinated and decaffeinated form of tea manufactured commercially in Assam, North Eastern part of India. The results display that phenolic/flavonoid content well correlated with antioxidant activity which was performed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability of plasma) assay. After decaffeination there is a decrease in the polyphenols concentration which also affects the antioxidant activity of green tea. For the enrichment of antioxidant activity of decaffeinated tea a herbal plant extract is used which shows a synergistic effect between green tea and herbal plant phenolic compounds.Keywords: antioxidant activity, decaffeination, green tea, flavonoid content, phenolic content, plant extract
Procedia PDF Downloads 3481549 Toxicity of Solenstemma Argel (Hargal ) on Nubian Goats
Authors: Amna B. Medani, M. A. Elbadwi Samia, Hassan A. Khalid
Abstract:
In our study, nine Nubian goat kids were obtained, allotted into three groups, and healthily adapted in pens within the premises of the Veterinary Teaching Hospital, University of Khartoum to be given the oral doses of the dried herb shoots at daily doses of 1 and 5 gm/kg/day with drinking water, while the kids of the control group were left undosed. All goats were slaughtered,if not died, after 35 days. S. argel at the given doses caused signs of arched posture, ruffled hair, shivering and paralysis of limbs. On post mortem, lesions were seen to be hepatic fatty changes, renal necrosis, congested lungs and inflamed intestines. Serum chemistry investigations revealed significant increase (P< 0.05-0.01) in the activities of ALP(alkaline phosphates) and AST( aspartate-aminotransferase) in goats dosed with 5 gm /kg/ day. Also observed were significant increases in inorganic phosphorus and urea concentrations (P < 0.05-0.01) in both dosed goat groups. .Other investigations including the activity of GGT( gamma glutamyltransferase), creatinine, calcium, total protein and albumin illustrated no significant difference from that of the undosed controls. On haematological evaluation , the goat kids dosed with 5 gm/kg/dayshowed a decrease in haemoglobin concentration and red blood cells count of (P < 0.05-0.01).Both groups of dosed goats showed a higher packed cell volume values of (P < 0.05) when compared to the control goats .Mean corpuscular haemoglobin values were not different from those of the control kids. S. argel at the given doses caused signs of arched posture, ruffled hair, shivering and paralysis of limbs. On post mortem, lesions were seen to be hepatic fatty changes, renal necrosis, congested lungs and inflamed intestines. Serum chemistry investigations revealed significant increase (P < 0.05-0.01) in the activities of ALP(alkaline phosphates) and AST( aspartate-aminotransferase) in goats dosed with 5 gm /kg/ day. Also observed were significant increases in inorganic phosphorus and urea concentrations (P < 0.05-0.01) in both dosed goat groups. .Other investigations including the activity of GGT( gamma-glutamyltransferase), creatinine, calcium, total protein and albumin illustrated no significant difference from that of the undosed controls. calcium, total protein and albumin illustrated no significant difference from that of the undosed controls. On haematological evaluation , the goat kids dosed with 5 gm/kg/dayshowed a decrease in haemoglobin concentration and red blood cells count of (P < 0.05-0.01).Both groups of dosed goats showed a higher packed cell volume values of (P < 0.05) when compared to the control goats .Mean corpuscular haemoglobin values were not different from those of the control kids. Data obtained were then discussed to find S. argel irritable to intestines , toxic to the kidney and liver and a haematological mild toxin.Suggestions for future were forwarded.Keywords: hargal, nubian goats, solenstemma argel, toxicity
Procedia PDF Downloads 3211548 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation
Authors: Waqas Ahmed Khan, Faheem Khokhaar
Abstract:
Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change
Procedia PDF Downloads 2121547 Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)
Authors: Shahenaz Sidi, S. K. Tank
Abstract:
When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil.Keywords: Brownfield, phytoextraction, helianthus, oil, commercial
Procedia PDF Downloads 3371546 In-vitro Antioxidant Activity of Two Selected Herbal Medicines
Authors: S. Vinotha, I. Thabrew, S. Sri Ranjani
Abstract:
Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C).Keywords: activity, different extracts, herbal medicines, in-vitro antioxidant
Procedia PDF Downloads 4051545 Determination of Iron, Zinc, Copper, Cadmium and Lead in Different Cigarette Brands in Yemen by Atomic Absorption Spectrometry
Authors: Ali A. Mutair
Abstract:
The concentration levels of iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in different cigarette brands commonly produced and sold in Yemen were determined. Convenient sample treatment for cigarette tobacco of freshly opened packs was achieved by a sample preparation method based on dry digestion, and the concentrations of the analysed metals were measured by Flame Atomic Absorption Spectrometry (FAAS). The mean values obtained for Fe, Zn, Cu, Cd, and Pb in different Yemeni cigarette tobacco were 311, 52.2, 10.11, 1.71 and 4.06 µg/g dry weight, respectively. There is no more significant difference among cigarette brands tested. It was found that Fe was at the highest concentration, followed by Zn, Cu, Pb and Cd. The average relative standard deviation (RSD) ranged from 1.77% to 19.34%. The accuracy and precision of the results were checked by blank and recovery tests. The results show that Yemeni cigarettes contain heavy metal concentration levels that are similar to those in foreign cigarette brands reported by other studies in the worldwide.Keywords: iron, zinc, copper, lead, cadmium, tobacco, Yemeni cigarette brands, atomic absorption spectrometry
Procedia PDF Downloads 3591544 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission
Authors: Changyeop Lee, Sewon Kim
Abstract:
Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.Keywords: fuel lean reburn, NOx, CO, LNG flame
Procedia PDF Downloads 4251543 Ascorbic Acid Application Mitigates the Salt Stress Effects on Helianthus annuus L. Plants Grown on a Reclaimed Saline Soil
Authors: Mostafa M. Rady, Majed M. Howladar, Saad M. Howladar
Abstract:
A field trial was conducted during two successive seasons (2013 and 2014) in Southeast Fayoum, Egypt (29º 17'N; 30º 53'E) to investigate the improving effect of ascorbic acid (Vit C) foliar spray at the rates of 0, 1, 2 or 3 mM on the growth, seed and oil yields, and some chemical constituents of sunflower plants grown on a reclaimed saline soil (EC = 7.98–7.83). Vit C application at all rates (1, 2 and 3 mM) was significantly increased growth traits, seed and oil yields, and the concentrations of endogenous Vit C, leaf photosynthetic pigments, total soluble sugars, free proline and nutrient elements as well as K/Na ratio. In contrast, Na concentration was significantly reduced with the application of all Vit C levels. Vit C foliar spray at the rate of 2 mM was found to be the best treatment, alleviating the inhibitory effects of salinity on sunflower plants grown on a reclaimed saline soil.Keywords: Helianthus annuus L., Vit C, salinity, growth, seed and oil yields, osmoprotectants
Procedia PDF Downloads 4181542 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor
Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park
Abstract:
In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.Keywords: accuracy improvement, IR gas sensor, gas leak, detector
Procedia PDF Downloads 391