World Academy of Science, Engineering and Technology International Journal of Chemical and Materials Engineering Vol:17, No:01, 2023

Removal of an Acid Dye from Water Using Cloud Point Extraction and Investigation of Surfactant Regeneration by pH Control

Authors: Ghouas Halima, Haddou Boumedienne, Jean Peal Cancelier, Cristophe Gourdon, Ssaka Collines

Abstract : This work concerns the coacervate extraction of industrial dye, namely BezanylGreen - F2B, from an aqueous solution by nonionic surfactant "Lutensol AO7 and TX-114" (readily biodegradable). Binary water/surfactant and pseudo-binary (in the presence of solute) phase diagrams were plotted. The extraction results as a function of wt.% of the surfactant and temperature are expressed by the following four quantities: percentage of solute extracted, E%, residual concentrations of solute and surfactant in the dilute phase (Xs,w, and Xt,w, respectively) and volume fraction of coacervate at equilibrium (Φ c). For each parameter, whose values are determined by a design of experiments, these results are subjected to empirical smoothing in three dimensions. The aim of this study is to find out the best compromise between E% and Φ c. E% increases with surfactant concentration and temperature in optimal conditions, and the extraction extent of TA reaches 98 and 96 % using TX-114 and Lutensol AO7, respectively. The effect of sodium sulfate or cetyltrimethylammonium bromide (CTAB) addition is also studied. Finally, the possibility of recycling the surfactant is proved.

Keywords: extraction, cloud point, non ionic surfactant, bezanyl green

Conference Title: ICACAC 2023: International Conference on Advances in Chemistry and Applied Chemistry

Conference Location: Istanbul, Türkiye Conference Dates: January 30-31, 2023