Search results for: simple reaction time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22028

Search results for: simple reaction time

20948 Verification of the Effect of the Hazard-Perception Training Tool for Drivers Ported from a Tablet Device to a Smartphone

Authors: K. Shimazaki, M. Mishina, A. Fujii

Abstract:

In a previous study, we developed a hazard-perception training tool for drivers using a tablet device and verified its effectiveness. Accident movies recorded by drive recorders were separated into scenes before and after the collision. The scene before the collision is presented to the driver. The driver then touches the screen to point out where he/she feels danger. After the screen is touched, the tool presents the collision scene and tells the driver if what he/she pointed out is correct. Various effects were observed such as this tool increased the discovery rate of collision targets and reduced the reaction time. In this study, we optimized this tool for the smartphone and verified its effectiveness. Verifying in the same way as in the previous study on tablet devices clarified that the same effect can be obtained on the smartphone screen.

Keywords: hazard perception, smartphone, tablet devices, driver education

Procedia PDF Downloads 218
20947 Improving the Performance of Road Salt on Anti-Icing

Authors: Mohsen Abotalebi Esfahani, Amin Rahimi

Abstract:

Maintenance and management of route and roads infrastructure is one of the most important and the most fundamental principles of the countries. Several methods have been under investigation as preventive proceedings for the maintenance of asphalt pavements for many years. Using a mixture of salt, sand and gravel is the most common method of deicing, which could have numerous harmful consequences. Icy or snow-covered road is one of the major reasons of accidents in rainy seasons, which causes substantial damages such as loss of time and energy, environmental pollution, destruction of buildings, traffic congestion and rising possibility of accidents. Regarding this, every year the government incurred enormous costs to secure traverses. In this study, asphalt pavements have been cured, in terms of compressive strength, tensile strength and resilient modulus of asphalt samples, under the influence of Magnesium Chloride, Calcium Chloride, Sodium Chloride, Urea and pure water; and showed that de-icing with the calcium chloride solution and urea have the minimum negative effect and de-icing with pure water has most negative effect on laboratory specimens. Hence some simple techniques and new equipment and less use of sand and salt, can reduce significantly the risks and harmful effects of excessive use of salt, sand and gravel and at the same time use the safer roads.

Keywords: maintenance, sodium chloride, icyroad, calcium chloride

Procedia PDF Downloads 284
20946 SO2 Sensing Performance of Nanostructured CdSnO3 Thin Films Prepared by Spray Pyrolysis Technique

Authors: R. H. Bari

Abstract:

The nanostructured thin films of CdSnO3 are sensitive to change in their environment. CdSnO3 is successfully used as gas sensor due to the dependence of the electrical conductivity on the ambient gas composition. Nanostructured CdSnO3 thin films of different substrate temperature (300 0C, 350 0C, 400 0C and 450 0C) were deposited onto heated glass substrate by simple spray pyrolysis (SP) technique. Sensing elements of nanostructured CdSnO3 were annealed at 500 0C for 1 hrs. Characterization includes a different analytical technique such as, X-ray diffractogram (XRD), energy dispersive X-ray analysis (EDAX), and Field emission scanning electron microscope (FE-SEM). The average grain size observed from XRD and FF-SEM was found to be less than 18.36 and 23 nm respectively. The films sprayed at substrate temperature for 400 0C was observed to be most sensitive (S = 530) to SO2 for 500 ppm at 300 0C. The response and recovery time is 4 sec, 8 sec respectively.

Keywords: nanostructured CdSnO3, spray pyrolysis, SO2 gas sensing, quick response

Procedia PDF Downloads 286
20945 Predicting Bridge Pier Scour Depth with SVM

Authors: Arun Goel

Abstract:

Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.

Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)

Procedia PDF Downloads 451
20944 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil

Authors: Saimatun Nisa

Abstract:

Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.

Keywords: walnut shell, biooil, biochar, microwave pyrolysis

Procedia PDF Downloads 52
20943 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.

Keywords: melting furnace, inverse heat transfer, enthalpy method, levenberg–marquardt method

Procedia PDF Downloads 324
20942 Dermatomyositis: It is Not Always an Allergic Reaction

Authors: Irfan Abdulrahman Sheth, Sohil Pothiawala

Abstract:

Dermatomyositis is an idiopathic inflammatory myopathy, traditionally characterized by a progressive, symmetrical proximal muscle weakness and pathognomonic or characteristic cutaneous manifestations. We report a case of a 60-year old Chinese female who was referred from polyclinic for allergic rash over the body after applying hair dye 3 weeks ago. It was associated with puffiness of face, shortness of breath and hoarse voice since last 2 weeks with decrease effort tolerance. She also complained of dysphagia/ myalgia with progressive weakness of proximal muscles and palpitations. She denied chest pain, loss of appetite, weight loss, orthopnea or fever. She had stable vital signs and appeared cushingoid. She was noted to have rash over the scalp/ face and ecchymosis over the right arm with puffiness of face and periorbital oedema. There was symmetrical muscle weakness and other neurological examination was normal. Initial impression was of allergic reaction and underlying nephrotic syndrome and Cushing’s syndrome from TCM use. Diagnostic tests showed high Creatinine kinase (CK) of 1463 u/l, CK–MB of 18.7 ug/l and Troponin –T of 0.09 ug/l. The Full blood count and renal panel was normal. EMG showed inflammatory myositis. Patient was managed by rheumatologist and discharged on oral prednisolone with methotrexate/ ergocalciferol capsule and calcium carb, vitamin D tablets and outpatient follow up. In some patients, cutaneous disease exists in the absence of objective evidence of muscle inflammation. Management of dermatomyositis begins with careful investigation for the presence of muscle disease or of additional systemic involvement, particularly of the pulmonary, cardiac or gastrointestinal systems, and for the possibility of an accompanying malignancy. Muscle disease and systemic involvement can be refractory and may require multiple sequential therapeutic interventions or, at times, combinations of therapies. Thus, we want to highlight to the physicians that the cutaneous disease of dermatomyositis should not be confused with allergic reaction. It can be particularly challenging to diagnose. Early recognition aids appropriate management of this group of patients.

Keywords: dermatomyositis, myopathy, allergy, cutaneous disease

Procedia PDF Downloads 335
20941 Manufacturing of Twist-Free Surfaces by Magnetism Aided Machining Technologies

Authors: Zs. Kovács, Zs. J. Viharos, J. Kodácsy

Abstract:

As a well-known conventional finishing process, the grinding is commonly used to manufacture seal mating surfaces and bearing surfaces, but is also creates twisted surfaces. The machined surfaces by turning or grinding usually have twist structure on the surfaces, which can convey lubricants such as conveyor screw. To avoid this phenomenon, have to use special techniques or machines, for example start-stop turning, tangential turning, ultrasonic protection or special toll geometries. All of these solutions have high cost and difficult usability. In this paper, we describe a system and summarize the results of the experimental research carried out mainly in the field of Magnetic Abrasive Polishing (MAP) and Magnetic Roller Burnishing (MRB). These technologies are simple and also green while able to produce twist-free surfaces. During the tests, C45 normalized steel was used as workpiece material which was machined by simple and Wiper geometrical turning inserts in a CNC turning lathe. After the turning, the MAP and MRB technologies can be used directly to reduce the twist of surfaces. The evaluation was completed by advanced measuring and IT equipment.

Keywords: magnetism, finishing, polishing, roller burnishing, twist-free

Procedia PDF Downloads 576
20940 Nanofibrous Ion Exchangers

Authors: Jaromír Marek, Jakub Wiener, Yan Wang

Abstract:

The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by Nanospider technology. Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.

Keywords: electrospinning, ion exchangers, nanofibers, polystyrene

Procedia PDF Downloads 257
20939 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 153
20938 Synthesis, Characterization and Biological Evaluation of Some Pyrazole Derivatives

Authors: Afifa Hafidh, Hedia Chaabane

Abstract:

This work mainly focused on the synthetic strategies and biological activities associated with pyrazoles. Pyrazole derivatives have been successfully synthesized by simple and facile method and studied for their antibacterial activity. These compounds were prepared from pyrazolic difunctional compounds as starting materials, by reaction with salicylic acid, paracetamol and thiosemicarbazide respectively. Structure of all the prepared compounds confirmation were proved using (FT-IR), (1H-NMR) and (13C-NMR) spectra in addition to melting points. The screening of the antimicrobial activity of the pyrazolic derivatives was examined against different microorganisms in the present study. They were screened for their antimicrobial activities against gram positive bacteria, gram negative bacteria and Candida albicans. The synthesized compounds were found to exhibit high antibacterial and antifungal efficiency against several tested bacterial strains, using agar diffusion method and filter paper disc-diffusion method. Ampicillin was used as positive control for all strains except Candida albicans for which Nystatin was used. The obtained results reveal that the antibacterial activity of some pyrazolic derivatives is comparable to that observed for the control samples (Ampicilin and Nystatin), suggesting a strong antibacterial activity. The analysis of these results shows that synthesized products react on the surfaces cell walls that are disrupted. When these products are in contact with the bacteria, they damage the membrane, leading to the perturbation of different cellular processes and then leakage of cytoplasm, resulting in the death of the cells. The results will be presented in details. The obtained products constitute effective antibacterial agents and important compounds for biological systems.

Keywords: salicylic acid, antimicrobial activities, antioxidant activity, paracetamol, pyrazole, thiosemicarbazide

Procedia PDF Downloads 173
20937 ZnO / TiO2 Nanoparticles for Degradation of Cyanide Ion

Authors: Masoumeh Tabatabaee, Zahra Shahryarzadeh, Masoud R. Shishebor

Abstract:

Advanced oxidation process (AOPs) is alternative method for the complete degradation many organic pollutants. When a photocatalyst absorbs radiation whose energy hν > Eg an ē from its filled valance band (VB) is promoted to its conduction band (CB) and valance band holes h+ are formed. Electron would reduce any available species, including O2, water and hydroxide ion to form hydroxyl radicals. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. TiO2 can only absorb a small portion of solar spectrum in the UV region and many methods such as dye sensitization, doping of other metals and using TiO2 with another semiconductor have been used to improve the photocatalytic activity of TiO2 under solar irradiation. Studies have shown that the use of metal oxides or sulfide such as WO3, MoO3, SiO2, MgO, ZnO, and CdS with TiO2 can significantly enhance the photocatalytic activity of TiO2. Due to similarity of photodegradation mechanism of ZnO with TiO2, it is a suitable semiconductor using with TiO2 and recently nanosized bicomponent TiO2-ZnO photocatalysts were prepared and used for degradation of some pollutants. In this study, Nano-sized ZnO/TiO2 composite was synthesized. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to characterize the structure and morphology of it. The effect of photocatalytic activity of prepared ZnO/TiO2 on the degradation of cyanide ion under UV was investigated. The effect of various parameters such as ZnO/TiO2 concentration, amount of photocatalyst, amount of H2O2, initial dye or cyanide ion concentration, pH and irradiation time on were investigated. Results show that more than 95% of 4 mgL-1 cyanide ion degraded after 60-min reaction time and under UV irradiation.

Keywords: photodegradation, ZnO/TiO2, nanoparticle, cyanide ion

Procedia PDF Downloads 395
20936 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications

Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi

Abstract:

Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.

Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery

Procedia PDF Downloads 108
20935 Synthesis of Erlotinib Analogues, Conjugation of BSA to Erlotinib Alcohol and Their Anti-Cancer Activity against NSCLC

Authors: Ramalingam Boobalan, Chinpiao Chen, Jui-I. Chiao

Abstract:

A series of erlotinib analogues that have structural modification at 6,7-alkoxyl positions is efficiently synthesized. The key reactions that involved in synthesis are one-pot oxime formation-dehydration for the formation of nitrile, quinazoline ring formation reaction between aniline and o-cyanoaniline via formamidine intermediate, Fe/NH4Cl catalyzed reduction-hetereocyclization-reductive ring opening reaction for the formation of o-aminobenzamide, high yielding seal tube reactions for O-demethylation, sodium iodide substitution, ammonia substitution. The in vitro anti-tumor activity of synthesized compounds is studied in two non-small cell lung cancer (NSCLC) cell lines (A549 and H1975). Among the synthesized compounds, the iodo compound 6 (ETN-6) exhibits higher anti-cancer activity compared to erlotinib. An efficient method is developed for the conjugation of erlotinib analogue-4, alcohol compound, with protein, bovine serum albumin (BSA), via succinic acid linker. The in vitro anti-tumor activity of the protein attached erlotinib analogue, 8 (ETN-4-Suc-BSA), showed stronger inhibitory activity in both A549 and H1975 NSCLC cell lines.

Keywords: anti-cancer, BSA, EGFR, Erlotinib

Procedia PDF Downloads 330
20934 High Pressure Delignification Process for Nanocrystalline Cellulose Production from Agro-Waste Biomass

Authors: Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta

Abstract:

Nanocrystalline cellulose (NCC) has been widely used for miscellaneous applications due to its superior properties over other nanomaterials. However, the major problems associated with the production of NCC are long reaction time, low production rate and inefficient process. The mass production of NCC within a short period of time is still a great challenge. The main objective of this study is to produce NCC from rice husk agro waste biomass from a high pressure delignification process (HPDP), followed by bleaching and hydrolysis processes. The HPDP has not been explored for NCC production from rice husk biomass (RHB) until now. In order to produce NCC, powder rice husk (PRH) was placed into a stainless steel reactor at 80 ˚C under 5 bars. Aqueous solution of NaOH (4M) was used for the dissolution of lignin and other amorphous impurities from PRH. After certain experimental times (1h, 3.5h and 6h), bleaching and hydrolysis were carried out on delignified samples. NaOCl (20%) and H2SO4 (4M) solutions were used for bleaching and hydrolysis processes, respectively. The NCC suspension from hydrolysis was sonicated and neutralized by buffer solution for various characterisations. Finally NCC suspension was dried and analyzed by FTIR, XRD, SEM, AFM and TEM. The chemical composition of NCC and PRH was estimated by TAPPI (Technical Association of Pulp and Paper Industry) standard methods to observe the product purity. It was found that, the 6h of the HPDP was more efficient to produce good quality NCC than that at 1h and 3.5h due to low separation of non-cellulosic components from RHB. The analyses indicated the crystallinity of NCC to be 71 %, particle size of 20-50 nm (diameter) and 100-200 nm in length.

Keywords: nanocrystalline cellulose, NCC, high pressure delignification, bleaching, hydrolysis, agro-waste biomass

Procedia PDF Downloads 264
20933 Detection of Parkinsonian Freezing of Gait

Authors: Sang-Hoon Park, Yeji Ho, Gwang-Moon Eom

Abstract:

Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods.

Keywords: freezing of gait, detection, Parkinson's disease, time-domain method

Procedia PDF Downloads 444
20932 Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms

Authors: Prathap S. Raghavendra, Mohamed S. Z. Shamshuddin, Thimmaraju N. Venkatesh

Abstract:

The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2,Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated and powder forms and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. But over SO42-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.

Keywords: cordierite honeycomb, methyl phenyl malonate, vapour phase transesterification, zirconia

Procedia PDF Downloads 316
20931 The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete

Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan

Abstract:

Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.

Keywords: addiction, athletic performance, genotype, sport genetics

Procedia PDF Downloads 213
20930 N400 Investigation of Semantic Priming Effect to Symbolic Pictures in Text

Authors: Thomas Ousterhout

Abstract:

The purpose of this study was to investigate if incorporating meaningful pictures of gestures and facial expressions in short sentences of text could supplement the text with enough semantic information to produce and N400 effect when probe words incongruent to the picture were subsequently presented. Event-related potentials (ERPs) were recorded from a 14-channel commercial grade EEG headset while subjects performed congruent/incongruent reaction time discrimination tasks. Since pictures of meaningful gestures have been shown to be semantically processed in the brain in a similar manner as words are, it is believed that pictures will add supplementary information to text just as the inclusion of their equivalent synonymous word would. The hypothesis is that when subjects read the text/picture mixed sentences, they will process the images and words just like in face-to-face communication and therefore probe words incongruent to the image will produce an N400.

Keywords: EEG, ERP, N400, semantics, congruency, facilitation, Emotiv

Procedia PDF Downloads 258
20929 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification

Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee

Abstract:

Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.

Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel

Procedia PDF Downloads 255
20928 Genetic Algorithms Multi-Objective Model for Project Scheduling

Authors: Elsheikh Asser

Abstract:

Time and cost are the main goals of the construction project management. The first schedule developed may not be a suitable schedule for beginning or completing the project to achieve the target completion time at a minimum total cost. In general, there are trade-offs between time and cost (TCT) to complete the activities of a project. This research presents genetic algorithms (GAs) multi-objective model for project scheduling considering different scenarios such as least cost, least time, and target time.

Keywords: genetic algorithms, time-cost trade-off, multi-objective model, project scheduling

Procedia PDF Downloads 413
20927 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications

Authors: Wadha Alqahtani

Abstract:

In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.

Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer

Procedia PDF Downloads 115
20926 A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image

Authors: Yu-Cheng Chen, Tzu-Ping Lin, Feng-Yi Lin, Chih-Yu Chen

Abstract:

Due to the urban heat island effect caused by highly development of city, the heat stress increased in recent year rapidly. Resulting in a sharp raise of the energy used in urban area. The heat stress during summer time exacerbated the usage of air conditioning and electric equipment, which caused more energy consumption and anthropogenic heat. Therefore, an accurate and simple method to measure energy used in urban area can be helpful for the architectures and urban planners to develop better energy efficiency goals. This research applies the combination of airborne LiDAR data and thermal imager to provide an innovate method to estimate energy consumption. Owing to the high resolution of remote sensing data, the accurate current volume and total floor area and the surface temperature of building derived from LiDAR and thermal imager can be herein obtained to predict energy used. In the estimate process, the LiDAR data will be divided into four type of land cover which including building, road, vegetation, and other obstacles. In this study, the points belong to building were selected to overlay with the land use information; therefore, the energy consumption can be estimated precisely with the real value of total floor area and energy use index for different use of building. After validating with the real energy used data from the government, the result shows the higher building in high development area like commercial district will present in higher energy consumption, caused by the large quantity of total floor area and more anthropogenic heat. Furthermore, because of the surface temperature can be warm up by electric equipment used, this study also applies the thermal image of building to find the hot spots of energy used and make the estimation method more complete.

Keywords: urban heat island, urban planning, LiDAR, thermal imager, energy consumption

Procedia PDF Downloads 239
20925 The Role of Time Management Skills in Academic Performance of the University Lecturers

Authors: Thuduwage Lasanthika Sajeevanie

Abstract:

Success is very important, and there are many factors affecting the success of any situation or a person. In Sri Lankan Context, it is hardly possible to find an empirical study relating to time management and academic success. Globally many organizations, individuals practice time management to be effective. Hence it is very important to examine the nature of time management practice. Thus this study will fill the existing gap relating to achieving academic success through proper time management practices. The research problem of this study is what is the relationship exist among time management skills and academic success of university lecturers in state universities. The objective of this paper is to identify the impact of time management skills for academic success of university lecturers. This is a conceptual study, and it was done through a literature survey by following purposive sampling technique for the selection of literature. Most of the studies have found that time management is highly related to academic performance. However, most of them have done on the academic performance of the students, and there were very few studies relating to academic performance of the university lecturers. Hence it can be further suggested to conduct a study relating to identifying the relationship between academic performance and time management skills of university lecturers.

Keywords: academic success, performance, time management skills, university lecturers

Procedia PDF Downloads 357
20924 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 144
20923 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.

Keywords: scaffolds, porosity, diffusion, transient analysis

Procedia PDF Downloads 541
20922 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 268
20921 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City

Authors: Kibreab Alene Fenite

Abstract:

The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.

Keywords: assessment, challenges, equipment, guidelines, implementation, performance

Procedia PDF Downloads 281
20920 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures

Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto

Abstract:

HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.

Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition

Procedia PDF Downloads 482
20919 Language Shapes Thought: An Experimental Study on English and Mandarin Native Speakers' Sequencing of Size

Authors: Hsi Wei

Abstract:

Does the language we speak affect the way we think? This question has been discussed for a long time from different aspects. In this article, the issue is examined with an experiment on how speakers of different languages tend to do different sequencing when it comes to the size of general objects. An essential difference between the usage of English and Mandarin is the way we sequence the size of places or objects. In English, when describing the location of something we may say, for example, ‘The pen is inside the trashcan next to the tree at the park.’ In Mandarin, however, we would say, ‘The pen is at the park next to the tree inside the trashcan.’ It’s clear that generally English use the sequence of small to big while Mandarin the opposite. Therefore, the experiment was conducted to test if the difference of the languages affects the speakers’ ability to do the different sequencing. There were two groups of subjects; one consisted of English native speakers, another of Mandarin native speakers. Within the experiment, three nouns were showed as a group to the subjects as their native languages. Before they saw the nouns, they would first get an instruction of ‘big to small’, ‘small to big’, or ‘repeat’. Therefore, the subjects had to sequence the following group of nouns as the instruction they get or simply repeat the nouns. After completing every sequencing and repetition in their minds, they pushed a button as reaction. The repetition design was to gather the mere reading time of the person. As the result of the experiment showed, English native speakers reacted more quickly to the sequencing of ‘small to big’; on the other hand, Mandarin native speakers reacted more quickly to the sequence ‘big to small’. To conclude, this study may be of importance as a support for linguistic relativism that the language we speak do shape the way we think.

Keywords: language, linguistic relativism, size, sequencing

Procedia PDF Downloads 281