Search results for: statistical modeling
6610 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application
Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro
Abstract:
This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.Keywords: item response theory, dimensionality, submodel theory, factorial analysis
Procedia PDF Downloads 3726609 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia
Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy
Abstract:
Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.Keywords: e-learning system, gamification, motivation, social comparison, visualization
Procedia PDF Downloads 1536608 The Inherent Flaw in the NBA Playoff Structure
Authors: Larry Turkish
Abstract:
Introduction: The NBA is an example of mediocrity and this will be evident in the following paper. The study examines and evaluates the characteristics of the NBA champions. As divisions and playoff teams increase, there is an increase in the probability that the champion originates from the mediocre category. Since it’s inception in 1947, the league has been mediocre and continues to this day. Why does a professional league allow any team with a less than 50% winning percentage into the playoffs? As long as the finances flow into the league, owners will not change the current algorithm. The objective of this paper is to determine if the regular season has meaning in finding an NBA champion. Statistical Analysis: The data originates from the NBA website. The following variables are part of the statistical analysis: Rank, the rank of a team relative to other teams in the league based on the regular season win-loss record; Winning Percentage of a team based on the regular season; Divisions, the number of divisions within the league and Playoff Teams, the number of playoff teams relative to a particular season. The following statistical applications are applied to the data: Pearson Product-Moment Correlation, Analysis of Variance, Factor and Regression analysis. Conclusion: The results indicate that the divisional structure and number of playoff teams results in a negative effect on the winning percentage of playoff teams. It also prevents teams with higher winning percentages from accessing the playoffs. Recommendations: 1. Teams that have a winning percentage greater than 1 standard deviation from the mean from the regular season will have access to playoffs. (Eliminates mediocre teams.) 2. Eliminate Divisions (Eliminates weaker teams from access to playoffs.) 3. Eliminate Conferences (Eliminates weaker teams from access to the playoffs.) 4. Have a balanced regular season schedule, (Reduces the number of regular season games, creates equilibrium, reduces bias) that will reduce the need for load management.Keywords: alignment, mediocrity, regression, z-score
Procedia PDF Downloads 1306607 Statistical Quality Control on Assignable Causes of Variation on Cement Production in Ashaka Cement PLC Gombe State
Authors: Hamisu Idi
Abstract:
The present study focuses on studying the impact of influencer recommendation in the quality of cement production. Exploratory research was done on monthly basis, where data were obtained from secondary source i.e. the record kept by an automated recompilation machine. The machine keeps all the records of the mills downtime which the process manager checks for validation and refer the fault (if any) to the department responsible for maintenance or measurement taking so as to prevent future occurrence. The findings indicated that the product of the Ashaka Cement Plc. were considered as qualitative, since all the production processes were found to be in control (preset specifications) with the exception of the natural cause of variation which is normal in the production process as it will not affect the outcome of the product. It is reduced to the bearest minimum since it cannot be totally eliminated. It is also hopeful that the findings of this study would be of great assistance to the management of Ashaka cement factory and the process manager in particular at various levels in the monitoring and implementation of statistical process control. This study is therefore of great contribution to the knowledge in this regard and it is hopeful that it would open more research in that direction.Keywords: cement, quality, variation, assignable cause, common cause
Procedia PDF Downloads 2616606 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability
Authors: Akshay B. Pawar, Rohit Y. Parasnis
Abstract:
Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot
Procedia PDF Downloads 3246605 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS
Procedia PDF Downloads 1776604 The Relation between Coping Strategies with Stress and Mental Health Situation in Flying Addicted Family of Self Introducer and Private
Authors: Farnoush Haghanipour
Abstract:
Recent research studies relation between coping strategies with stress and mental health situation in flying addicted family of self-introducer and private, Units of Guilan province. For this purpose 251 family (parent, spouse), that referred to private and self-introducer centers to break out of drug are selected in random sampling form. Research method was cross sectional-descriptive and purpose of research was fixing of between kinds of coping strategies with stress and mental health condition with attention to demographic variables. Therefore to collection of information, coping strategies questionnaire (CSQ) and mental health questionnaire (GHQ) was used and finally data analyzed by descriptive statistical methods (average, standard deviation) and inferential statistical correlation coefficient and regression. Study of correlation coefficient between mental healths with problem focused emotional focused and detachment strategies in level more than %99 is confirmed. Also mental health with avoidant focused hasn't correlation in other words relation is between mental health with problem focused strategies (r= 0/34) and emotional focused with mental health (r=0.52) and detachment with mental health (r= 0.18) in meaningful level 0.05. And also relation is between emotional focused strategies and mental health (r= 0.034) that is meaningless in Alpha 0.05. Also relation between problem processed coping strategies and mental health situation with attention to demographic variable is meaningful and relation level verified in confidence level more than 0.99. And result of anticipation equation regression statistical test has most a have in problem focused coping strategy, mental health, but relation of the avoidant emotional, detachment strategy with mental health was meaningless with attention to demographic variables.Keywords: stress, coping strategy with stress, mental health, self introducer and private
Procedia PDF Downloads 3106603 A Computational Diagnostics for Dielectric Barrier Discharge Plasma
Authors: Zainab D. Abd Ali, Thamir H. Khalaf
Abstract:
In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon).Keywords: computational diagnostics, Boltzmann equation, electric discharge, electron density
Procedia PDF Downloads 7776602 Realistic Modeling of the Preclinical Small Animal Using Commercial Software
Authors: Su Chul Han, Seungwoo Park
Abstract:
As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.Keywords: mimics, preclinical small animal, segmentation, 3D printer
Procedia PDF Downloads 3666601 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop
Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves
Abstract:
Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phnolic properties evaluated.Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis
Procedia PDF Downloads 4766600 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality
Procedia PDF Downloads 4676599 The Influence of Celebrity Endorsement on Consumers’ Attitude and Purchas Intention Towards Skincare Products in Malaysia
Authors: Tew Leh Ghee
Abstract:
The study's goal is to determine how celebrity endorsement affects Malaysian consumers' attitudes and intentions to buy skincare products. Since customers now largely rely on celebrity endorsement to influence purchasing decisions in almost every business, celebrity endorsement is not, in reality, a new phenomenon. Even though the market for skincare products has a vast potential to be exploited, corporations have yet to seize this niche via celebrity endorsement. Basically, there hasn't been much study done to recognize the significance of celebrity endorsement in this industry. This research combined descriptive and quantitative methods with a self-administered survey as the primary data-gathering tool. All of the characteristics under study were measured using a 5-point Likert scale, and the questionnaire was written in English. A convenience sample method was used to choose respondents, and 360 sets of valid questionnaires were gathered for the study's statistical analysis. Preliminary statistical analyses were analyzed using SPSS version 20.0 (Statistical Package for the Social Sciences). The backdrop of the respondents' demographics was examined using descriptive analysis. All concept assessments' validity and reliability were examined using exploratory factor analysis, item-total statistics, and reliability statistics. Pearson correlation and regression analysis were used, respectively, to assess relationships and impacts between the variables under study. The research showed that, apart from competence, celebrity endorsements of skincare products in Malaysia had a favorable impact on attitudes and purchase intentions as evaluated by attractiveness and dependability. The research indicated that the most significant element influencing attitude and buy intention was the credibility of a celebrity endorsement. The study offered implications in order to provide potential improvements of celebrity endorsement in skincare goods in Malaysia. The study's last portion includes its limits and ideas for the future.Keywords: trustworthiness, influential, phenomenon, celebrity emdorsement
Procedia PDF Downloads 806598 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19
Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane
Abstract:
The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.Keywords: network analysis, building simulation, COVID-19
Procedia PDF Downloads 1606597 Status of India towards Achieving the Millennium Development Goals
Authors: Rupali Satsangi
Abstract:
14 years ago, leaders from every country agreed on a vision for the future – a world with less poverty, hunger and disease, greater survival prospects for mothers and their infants, better educated children, equal opportunities for women, and a healthier environment; a world in which developed and developing countries work in partnership for the betterment of all. This vision took the shape of eight Millennium Development Goals, which provide countries around the world a framework for development and time-bound targets by which progress can be measured. However, India has found 35 of the indicators as relevant to India. India’s MDG-framework has been contextualized through a concordance with the existing official indicators of corresponding dimensions in the national statistical system. The present study based on secondary data analyzed the status of India towards achieving the MDGs after reviewing the data study find out that India can miss the MDGs Bus in women health, sanitation and global partnership. These goals were less addressed by India in his policies and takeoffs.Keywords: millennium development goals, national statistical system, global partnership, healthier environment
Procedia PDF Downloads 4046596 Meta-Review of Scholarly Publications on Biosensors: A Bibliometric Study
Authors: Nasrine Olson
Abstract:
With over 70,000 scholarly publications on the topic of biosensors, an overview of the field has become a challenge. To facilitate, there are currently over 700 expert-reviews of publications on biosensors and related topics. This study focuses on these review papers in order to provide a Meta-Review of the area. This paper provides a statistical analysis and overview of biosensor-related review papers. Comprehensive searches are conducted in the Web of Science, and PubMed databases and the resulting empirical material are analyzed using bibliometric methods and tools. The study finds that the biosensor-related review papers can be categorized in five related subgroups, broadly denoted by (i) properties of materials and particles, (ii) analysis and indicators, (iii) diagnostics, (iv) pollutant and analytical devices, and (v) treatment/ application. For an easy and clear access to the findings visualization of clusters and networks of connections are presented. The study includes a temporal dimension and identifies the trends over the years with an emphasis on the most recent developments. This paper provides useful insights for those who wish to form a better understanding of the research trends in the area of biosensors.Keywords: bibliometrics, biosensors, meta-review, statistical analysis, trends visualization
Procedia PDF Downloads 2176595 Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181
Authors: Swarali Hingse, Shraddha Digole, Uday Annapure
Abstract:
The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L.Keywords: ferulic acid, pycnoporus cinnabarinus, response surface methodology, vanillin
Procedia PDF Downloads 3836594 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3306593 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 3386592 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation
Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy
Abstract:
Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test
Procedia PDF Downloads 3846591 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting
Procedia PDF Downloads 2316590 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1466589 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 1696588 Approaches to Valuing Ecosystem Services in Agroecosystems From the Perspectives of Ecological Economics and Agroecology
Authors: Sandra Cecilia Bautista-Rodríguez, Vladimir Melgarejo
Abstract:
Climate change, loss of ecosystems, increasing poverty, increasing marginalization of rural communities and declining food security are global issues that require urgent attention. In this regard, a great deal of research has focused on how agroecosystems respond to these challenges as they provide ecosystem services (ES) that lead to higher levels of resilience, adaptation, productivity and self-sufficiency. Hence, the valuing of ecosystem services plays an important role in the decision-making process for the design and management of agroecosystems. This paper aims to define the link between ecosystem service valuation methods and ES value dimensions in agroecosystems from ecological economics and agroecology. The method used to identify valuation methodologies was a literature review in the fields of Agroecology and Ecological Economics, based on a strategy of information search and classification. The conceptual framework of the work is based on the multidimensionality of value, considering the social, ecological, political, technological and economic dimensions. Likewise, the valuation process requires consideration of the ecosystem function associated with ES, such as regulation, habitat, production and information functions. In this way, valuation methods for ES in agroecosystems can integrate more than one value dimension and at least one ecosystem function. The results allow correlating the ecosystem functions with the ecosystem services valued, and the specific tools or models used, the dimensions and valuation methods. The main methodologies identified are multi-criteria valuation (1), deliberative - consultative valuation (2), valuation based on system dynamics modeling (3), valuation through energy or biophysical balances (4), valuation through fuzzy logic modeling (5), valuation based on agent-based modeling (6). Amongst the main conclusions, it is highlighted that the system dynamics modeling approach has a high potential for development in valuation processes, due to its ability to integrate other methods, especially multi-criteria valuation and energy and biophysical balances, to describe through causal cycles the interrelationships between ecosystem services, the dimensions of value in agroecosystems, thus showing the relationships between the value of ecosystem services and the welfare of communities. As for methodological challenges, it is relevant to achieve the integration of tools and models provided by different methods, to incorporate the characteristics of a complex system such as the agroecosystem, which allows reducing the limitations in the processes of valuation of ES.Keywords: ecological economics, agroecosystems, ecosystem services, valuation of ecosystem services
Procedia PDF Downloads 1236587 2D-Modeling with Lego Mindstorms
Authors: Miroslav Popelka, Jakub Nozicka
Abstract:
The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software
Procedia PDF Downloads 4736586 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2836585 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis
Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed
Abstract:
This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.Keywords: gas turbine, optimization, ANFIS, performance, operating conditions
Procedia PDF Downloads 4256584 Logical-Probabilistic Modeling of the Reliability of Complex Systems
Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia
Abstract:
The paper presents logical-probabilistic methods, models, and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. It is important to design systems based on structural analysis, research, and evaluation of efficiency indicators. One of the important efficiency criteria is the reliability of the system, which depends on the components of the structure. Quantifying the reliability of large-scale systems is a computationally complex process, and it is advisable to perform it with the help of a computer. Logical-probabilistic modeling is one of the effective means of describing the structure of a complex system and quantitatively evaluating its reliability, which was the basis of our application. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of “weights” of elements of system. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research, and designing of optimal structure systems are carried out.Keywords: complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability of systems, “weights” of elements
Procedia PDF Downloads 666583 Modeling the Risk Perception of Pedestrians Using a Nested Logit Structure
Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Atieh Asgari Toorzani
Abstract:
Pedestrians are the most vulnerable road users since they do not have a protective shell. One of the most common collisions for them is pedestrian-vehicle at intersections. In order to develop appropriate countermeasures to improve safety for them, researches have to be conducted to identify the factors that affect the risk of getting involved in such collisions. More specifically, this study investigates factors such as the influence of walking alone or having a baby while crossing the street, the observable age of pedestrian, the speed of pedestrians and the speed of approaching vehicles on risk perception of pedestrians. A nested logit model was used for modeling the behavioral structure of pedestrians. The results show that the presence of more lanes at intersections and not being alone especially having a baby while crossing, decrease the probability of taking a risk among pedestrians. Also, it seems that teenagers show more risky behaviors in crossing the street in comparison to other age groups. Also, the speed of approaching vehicles was considered significant. The probability of risk taking among pedestrians decreases by increasing the speed of approaching vehicle in both the first and the second lanes of crossings.Keywords: pedestrians, intersection, nested logit, risk
Procedia PDF Downloads 1866582 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 4936581 Perspectives of Computational Modeling in Sanskrit Lexicons
Authors: Baldev Ram Khandoliyan, Ram Kishor
Abstract:
India has a classical tradition of Sanskrit Lexicons. Research work has been done on the study of Indian lexicography. India has seen amazing strides in Information and Communication Technology (ICT) applications for Indian languages in general and for Sanskrit in particular. Since Machine Translation from Sanskrit to other Indian languages is often the desired goal, traditional Sanskrit lexicography has attracted a lot of attention from the ICT and Computational Linguistics community. From Nighaŋţu and Nirukta to Amarakośa and Medinīkośa, Sanskrit owns a rich history of lexicography. As these kośas do not follow the same typology or standard in the selection and arrangement of the words and the information related to them, several types of Kośa-styles have emerged in this tradition. The model of a grammar given by Aṣṭādhyāyī is well appreciated by Indian and western linguists and grammarians. But the different models provided by lexicographic tradition also have importance. The general usefulness of Sanskrit traditional Kośas is well discussed by some scholars. That is most of the matter made available in the text. Some also have discussed the good arrangement of lexica. This paper aims to discuss some more use of the different models of Sanskrit lexicography especially focusing on its computational modeling and its use in different computational operations.Keywords: computational lexicography, Sanskrit Lexicons, nighanṭu, kośa, Amarkosa
Procedia PDF Downloads 165