Search results for: chest x-ray analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28221

Search results for: chest x-ray analysis

28161 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 132
28160 Clinical Features of Acute Aortic Dissection Patients Initially Diagnosed with ST-Segment Elevation Myocardial Infarction

Authors: Min Jee Lee, Young Sun Park, Shin Ahn, Chang Hwan Sohn, Dong Woo Seo, Jae Ho Lee, Yoon Seon Lee, Kyung Soo Lim, Won Young Kim

Abstract:

Background: Acute myocardial infarction (AMI) concomitant with acute aortic syndrome (AAS) is rare but prompt recognition of concomitant AAS is crucial, especially in patients with ST-segment elevation myocardial infarction (STEMI) because misdiagnosis with early thrombolytic or anticoagulant treatment may result in catastrophic consequences. Objectives: This study investigated the clinical features of patients of STEMI concomitant with AAS that may lead to the diagnostic clue. Method: Between 1 January 2010 and 31 December 2014, 22 patients who were the initial diagnosis of acute coronary syndrome (AMI and unstable angina) and AAS (aortic dissection, intramural hematoma and ruptured thoracic aneurysm) in our emergency department were reviewed. Among these, we excluded 10 patients who were transferred from other hospital and 4 patients with non-STEMI, leaving a total of 8 patients of STEMI concomitant with AAS for analysis. Result: The mean age of study patients was 57.5±16.31 years and five patients were Standford type A and three patients were type B aortic dissection. Six patients had ST-segment elevation in anterior leads and two patients had in inferior leads. Most of the patients had acute onset, severe chest pain but no patients had dissecting nature chest pain. Serum troponin I was elevated in three patients but all patients had D-dimer elevation. Aortic regurgitation or regional wall motion abnormality was founded in four patients. However, widened mediastinum was seen in all study patients. Conclusion: When patients with STEMI have elevated D-dimer and widened mediastinum, concomitant AAS may have to be suspected.

Keywords: aortic dissection, myocardial infarction, ST-segment, d-dimer

Procedia PDF Downloads 400
28159 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 161
28158 Comparison of EMG Normalization Techniques Recommended for Back Muscles Used in Ergonomics Research

Authors: Saif Al-Qaisi, Alif Saba

Abstract:

Normalization of electromyography (EMG) data in ergonomics research is a prerequisite for interpreting the data. Normalizing accounts for variability in the data due to differences in participants’ physical characteristics, electrode placement protocols, time of day, and other nuisance factors. Typically, normalized data is reported as a percentage of the muscle’s isometric maximum voluntary contraction (%MVC). Various MVC techniques have been recommended in the literature for normalizing EMG activity of back muscles. This research tests and compares the recommended MVC techniques in the literature for three back muscles commonly used in ergonomics research, which are the lumbar erector spinae (LES), latissimus dorsi (LD), and thoracic erector spinae (TES). Six healthy males from a university population participated in this research. Five different MVC exercises were compared for each muscle using the Tringo wireless EMG system (Delsys Inc.). Since the LES and TES share similar functions in controlling trunk movements, their MVC exercises were the same, which included trunk extension at -60°, trunk extension at 0°, trunk extension while standing, hip extension, and the arch test. The MVC exercises identified in the literature for the LD were chest-supported shoulder extension, prone shoulder extension, lat-pull down, internal shoulder rotation, and abducted shoulder flexion. The maximum EMG signal was recorded during each MVC trial, and then the averages were computed across participants. A one-way analysis of variance (ANOVA) was utilized to determine the effect of MVC technique on muscle activity. Post-hoc analyses were performed using the Tukey test. The MVC technique effect was statistically significant for each of the muscles (p < 0.05); however, a larger sample of participants was needed to detect significant differences in the Tukey tests. The arch test was associated with the highest EMG average at the LES, and also it resulted in the maximum EMG activity more often than the other techniques (three out of six participants). For the TES, trunk extension at 0° was associated with the largest EMG average, and it resulted in the maximum EMG activity the most often (three out of six participants). For the LD, participants obtained their maximum EMG either from chest-supported shoulder extension (three out of six participants) or prone shoulder extension (three out of six participants). Chest-supported shoulder extension, however, had a larger average than prone shoulder extension (0.263 and 0.240, respectively). Although all the aforementioned techniques were superior in their averages, they did not always result in the maximum EMG activity. If an accurate estimate of the true MVC is desired, more than one technique may have to be performed. This research provides additional MVC techniques for each muscle that may elicit the maximum EMG activity.

Keywords: electromyography, maximum voluntary contraction, normalization, physical ergonomics

Procedia PDF Downloads 196
28157 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 90
28156 Balanced Ischemia Misleading to a False Negative Myocardial Perfusion Imaging (Stress) Test

Authors: Devam Sheth

Abstract:

Nuclear imaging with stress myocardial perfusion (stress test) is the preferred first line investigation for noninvasive evaluation of ischaemic heart condition. The sensitivity of this test is close to 90 % making it a very reliable test. However, rarely it gives a false negative result which can be explained by the phenomenon termed as “balanced ischaemia”. We present the case of a 78 year Caucasian female without any significant past cardiac history, who presents with chest pain and shortness of breath since one day. The initial ECG and cardiac enzymes were non-impressive. Few hours later, she had some substernal chest pain along with some ST segment depression in the lateral leads. Stress test comes back negative for any significant perfusion defects. However, given her typical symptoms, she underwent a cardiac catheterization which revealed significant triple vessel disease mandating her to get a bypass surgery. This unusual phenomenon of false nuclear stress test in the setting of positive ECG changes can be explained only by balanced ischemia wherein due to global myocardial ischemia, the stress test fails to reveal relative perfusion defects in the affected segments.

Keywords: balanced, false positive, ischemia, myocardial perfusion imaging

Procedia PDF Downloads 304
28155 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 111
28154 'Evaluating Radiation Protections Aspects For Pediatric Chest Radiography: imaging Standards and Radiation Dose Measurements in Various Hospitals In Kuwait

Authors: Kholood Baron

Abstract:

Chest radiography (CXR) is one of the most important diagnostic examinations in pediatric radiography for diagnosing various diseases. Since, chest X-ray use ionizing radiation to obtain image radiographers should follow strict radiation protection strategies and ALARA principle to ensure that pediatrics receive the lowest dose possible [1] [2]. The aim is to evaluate different criteria related to pediatric CXR examinations performed in the radiology department in five hospitals in Kuwait. Methods: Data collected from a questionnaire and Entrance Skin Dose (ESD) measurements during CXR. 100 responses were collected and analyzed to highlight issues related to immobilization devices, radiation protection issues and repeat rate. While ThermoLumenince Dosimeters (TLDs) measured ESD during 25 CXR for pediatric patients. In addition, other aspects on the radiographer skills and information written in patient requests were collected and recorded. Results: Questionnaires responses showed that most radiographers do follow most radiation protection guidelines, but need to focus on improving their skills in collimation to ROI, dealing with immobilization tools and exposure factors. Since the first issue was least applied to young pediatrics, and the latter two were the common reasons for repeating an image. The ESD measurements revealed that the averaged dose involved in pediatric CXR is 143.9 µGy, which is relatively high but still within the limits of the recommended values [2-3] . The data suggests that this relatively high ESD values can be the result of using higher mAs and thus it I recommended to lower it according to ALARA principle. In conclusion, radiographers have the knowledge and the tools to reduce the radiation dose to pediatric patients but few lack the skills to optimize the collimation, immobilization application and exposure factors. The ESD were within recommended values. This research recommends that more efforts in the future should focus on improving the radiographer commitment to radiation protection and their skills in dealing with pediatric patient. This involves lowering the mAs used during DR.

Keywords: pediatric radiography, dosimetry, ESD measurements, radiation protection

Procedia PDF Downloads 39
28153 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review

Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho

Abstract:

Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.

Keywords: rotator cuff repair, decompression, pressure, complication

Procedia PDF Downloads 68
28152 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy

Procedia PDF Downloads 321
28151 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.

Keywords: COVID-19, radiology, respiratory diseases, HRCT

Procedia PDF Downloads 144
28150 Catamenial Pneumothorax: Report of Two Cases and Review of the Local Literature

Authors: Angeli Marie P. Lagman, Nephtali M. Gorgonio

Abstract:

Catamenial pneumothorax is defined as a recurrent accumulation of air in the pleural cavity, which occurs in the period of 72 hours before or after menses. In a menstruating woman presenting with the difficulty of breathing and chest pain with concomitant radiographic evidence of pneumothorax, a diagnosis of catamenial pneumothorax should be entertained. Two cases of catamenial pneumothorax were reported in our local literature. This report added two more cases. The first case is 45 years old G1P1, while the second case is 46 years old G2P2. These two patients had a history of pelvic endometriosis in the past. All other signs and symptoms were similar to the previously reported cases. All patients presented with difficulty of breathing associated with chest pain. Imaging studies showed right-sided pneumothorax in all patients. Intraoperatively, subpleural bleb, diaphragmatic fenestrations, and endometriotic implants were found. Three patients underwent video-assisted thoracosurgery (VATS), while one patient underwent open thoracotomy with pleurodesis. Histopathology revealed endometriosis in only two patients. All patients received postoperative hormonal therapy, and there were no recurrences noted in all patients. Endometriosis-related catamenial pneumothorax is a rare condition that needs early recognition of the symptoms. Several theories may be involved to explain the pathogenesis of catamenial pneumothorax. Two cases show a strong significant association between a history of pelvic endometriosis and the development of catamenial pneumothorax, while one case can be explained by the hormonal theory. The difficulty of breathing and chest pain in relation to menses may prompt early diagnosis. One case has shown that pneumothorax may occur even after menstruation. A biopsy of the endometrial implants may not always show endometrial glands and stroma, nor will immunostaining, which will not always show estrogen and progesterone receptors. Video-assisted thoracoscopic surgery is the gold standard in the diagnosis and treatment of catamenial pneumothorax. Postoperative hormonal suppression will further reduce the disease recurrence and facilitate the effectiveness of the surgical treatment.

Keywords: catamenial pneumothorax, endometriosis, menstruation, video assisted thoracosurgery

Procedia PDF Downloads 107
28149 Maternal Exposure to Bisphenol A and Its Association with Birth Outcomes

Authors: Yi-Ting Chen, Yu-Fang Huang, Pei-Wei Wang, Hai-Wei Liang, Chun-Hao Lai, Mei-Lien Chen

Abstract:

Background: Bisphenol A (BPA) is commonly used in consumer products, such as inner coatings of cans and polycarbonated bottles. BPA is considered to be an endocrine disrupting substance (EDs) that affects normal human hormones and may cause adverse effects on human health. Pregnant women and fetuses are susceptible groups of endocrine disrupting substances. Prenatal exposure to BPA has been shown to affect the fetus through the placenta. Therefore, it is important to evaluate the potential health risk of fetal exposure to BPA during pregnancy. The aims of this study were (1) to determine the urinary concentration of BPA in pregnant women, and (2) to investigate the association between BPA exposure during pregnancy and birth outcomes. Methods: This study recruited 117 pregnant women and their fetuses from 2012 to 2014 from the Taiwan Maternal- Infant Cohort Study (TMICS). Maternal urine samples were collected in the third trimester and questionnaires were used to collect socio-demographic characteristics, eating habits and medical conditions of the participants. Information about birth outcomes of the fetus was obtained from medical records. As for chemicals analysis, BPA concentrations in urine were determined by off-line solid-phase extraction-ultra-performance liquid chromatography coupled with a Q-Tof mass spectrometer. The urinary concentrations were adjusted with creatinine. The association between maternal concentrations of BPA and birth outcomes was estimated using the logistic regression model. Results: The detection rate of BPA is 99%; the concentration ranges (μg/g) from 0.16 to 46.90. The mean (SD) BPA levels are 5.37(6.42) μg/g creatinine. The mean ±SD of the body weight, body length, head circumference, chest circumference and gestational age at birth are 3105.18 ± 339.53 g, 49.33 ± 1.90 cm, 34.16 ± 1.06 cm, 32.34 ± 1.37 cm and 38.58 ± 1.37 weeks, respectively. After stratifying the exposure levels into two groups by median, pregnant women in higher exposure group would have an increased risk of lower body weight (OR=0.57, 95%CI=0.271-1.193), smaller chest circumference (OR=0.70, 95%CI=0.335-1.47) and shorter gestational age at birth newborn (OR=0.46, 95%CI=0.191-1.114). However, there are no associations between BPA concentration and birth outcomes reach a significant level (p < 0.05) in statistics. Conclusions: This study presents prenatal BPA profiles and infants in northern Taiwan. Women who have higher BPA concentrations tend to give birth to lower body weight, smaller chest circumference or shorter gestational age at birth newborn. More data will be included to verify the results. This report will also present the predictors of BPA concentrations for pregnant women.

Keywords: bisphenol A, birth outcomes, biomonitoring, prenatal exposure

Procedia PDF Downloads 147
28148 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 98
28147 Pulmonary Hydatid Cyst in a 13-Year-Old Child: A Case Report

Authors: Ghada Esheba, Bayan Hafiz, Ashwaq Al-Qarni, Abdulelah AlMalki, Esraa Kaheel

Abstract:

Hydatid disease is caused by genus Echinococcus, it is transmitted to human through sheep and cattle. People who lived in an endemic area should be suspected to have the disease. Pulmonary hydatid disease can be presented by respiratory manifestations as in our case. We report a case of child, 13 years old, who was presented by shortness of breath and non-productive cough 2 months ago. The patient had an attack of hemoptysis 3 months ago but there is no history of fever, other constitutional symptoms or any medical illness. The patient has had a close contact with a horse. On examination, the patient was oriented and vitally stable. Both side of chest were moving equally with decrease air entry on the left side of the chest. Cervical lymph node enlargement was also detected. The case was provisionally diagnosed as tuberculosis. The x-ray was normal, while CT scan showed two cysts in the left side. The patient was treated surgically with resection of both cysts without lobectomy. Broncho-alveolar lavage was done and together with plural effusion and both cysts were sent for histopathology. The patient received the following medication: albendazole 200MG/BID/Orally for 30 days and Cefuroxime 250MG/Q12H/Orally for 10 days.

Keywords: Echinococcus granulosus, hydatid disease, pediatrics, pulmonary hydatid cyst

Procedia PDF Downloads 277
28146 Association of Copy Number Variation of the CHKB, KLF6, GPC1, and CHRM3 Genes with Growth Traits of Datong Yak (Bos grunniens)

Authors: Habtamu Abera Goshu, Ping Yan

Abstract:

Copy number variation (CNV) is a significant marker of the genetic and phenotypic diversity among individuals that accounts for complex quantitative traits of phenotype and diseases via modulating gene dosage, position effects, alteration of downstream pathways, modification of chromosome structure, and position within the nucleus and disrupting coding regions in the genome. Associating copy number variations (CNVs) with growth and gene expression are a powerful approach for identifying genomic characteristics that contribute to phenotypic and genotypic variation. A previous study using next-generation sequencing illustrated that the choline kinase beta (CHKB), Krüpple-like factor 6 (KLF6), glypican 1(GPC1), and cholinergic receptor muscarinic 3 (CHRM3) genes reside within copy number variable regions (CNVRs) of yak populations that overlap with quantitative trait loci (QTLs) of meat quality and growth. As a result, this research aimed to determine the association of CNVs of the KLF6, CHKB, GPC1, and CHRM3 genes with growth traits in the Datong yak breed. The association between the CNV types of the KLF6, CHKB, GPC1, and CHRM3 genes and the growth traits in the Datong yak breed was determined by one-way analysis of variance (ANOVA) using SPSS software. The CNV types were classified as a loss (a copy number of 0 or 1), gain (a copy number >2), and normal (a copy number of 2) relative to the reference gene, BTF3 in the 387 individuals of Datong yak. These results indicated that the normal CNV types of the CHKB and GPC1 genes were significantly (P<0.05) associated with high body length, height and weight, and chest girth in six-month-old and five-year-old Datong yaks. On the other hand, the loss CNV types of the KLF6 gene is significantly (P<0.05) associated with body weight and length and chest girth at six-month-old and five-year-old Datong yaks. In the contrary, the gain CNV type of the CHRM3 gene is highly (P<0.05) associated with body weight, length, height, and chest girth in six-month-old and five-year-old. This work provides the first observation of the biological role of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in the Datong yak breed and might, therefore, provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yak breeds. Therefore, we hypothesized that this study provided inclusive information on the application of CNVs of the CHKB, KLF6, GPC1, and CHRM3 genes in growth traits in Datong yaks and its possible function in bovine species.

Keywords: Copy number variation, growth traits, yak, genes

Procedia PDF Downloads 176
28145 Accuracy of Computed Tomography Dose Monitor Values: A Multicentric Study in India

Authors: Adhimoolam Saravana Kumar, K. N. Govindarajan, B. Devanand, R. Rajakumar

Abstract:

The quality of Computed Tomography (CT) procedures has improved in recent years due to technological developments and increased diagnostic ability of CT scanners. Due to the fact that CT doses are the peak among diagnostic radiology practices, it is of great significance to be aware of patient’s CT radiation dose whenever a CT examination is preferred. CT radiation dose delivered to patients in the form of volume CT dose index (CTDIvol) values, is displayed on scanner monitors at the end of each examination and it is an important fact to assure that this information is accurate. The objective of this study was to estimate the CTDIvol values for great number of patients during the most frequent CT examinations, to study the comparison between CT dose monitor values and measured ones, as well as to highlight the fluctuation of CTDIvol values for the same CT examination at different centres and scanner models. The output CT dose indices measurements were carried out on single and multislice scanners for available kV, 5 mm slice thickness, 100 mA and FOV combination used. The 100 CT scanners were involved in this study. Data with regard to 15,000 examinations in patients, who underwent routine head, chest and abdomen CT were collected using a questionnaire sent to a large number of hospitals. Out of the 15,000 examinations, 5000 were head CT examinations, 5000 were chest CT examinations and 5000 were abdominal CT examinations. Comprehensive quality assurance (QA) was performed for all the machines involved in this work. Followed by QA, CT phantom dose measurements were carried out in South India using actual scanning parameters used clinically by the hospitals. From this study, we have measured the mean divergence between the measured and displayed CTDIvol values were 5.2, 8.4, and -5.7 for selected head, chest and abdomen procedures for protocols as mentioned above, respectively. Thus, this investigation revealed an observable change in CT practices, with a much wider range of studies being performed currently in South India. This reflects the improved capacity of CT scanners to scan longer scan lengths and at finer resolutions as permitted by helical and multislice technology. Also, some of the CT scanners have used smaller slice thickness for routine CT procedures to achieve better resolution and image quality. It leads to an increase in the patient radiation dose as well as the measured CTDIv, so it is suggested that such CT scanners should select appropriate slice thickness and scanning parameters in order to reduce the patient dose. If these routine scan parameters for head, chest and abdomen procedures are optimized than the dose indices would be optimal and lead to the lowering of the CT doses. In South Indian region all the CT machines were routinely tested for QA once in a year as per AERB requirements.

Keywords: CT dose index, weighted CTDI, volumetric CTDI, radiation dose

Procedia PDF Downloads 260
28144 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 219
28143 Experimental Investigation of On-Body Channel Modelling at 2.45 GHz

Authors: Hasliza A. Rahim, Fareq Malek, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed

Abstract:

This paper presents the experimental investigation of on-body channel fading at 2.45 GHz considering two effects of the user body movement; stationary and mobile. A pair of body-worn antennas was utilized in this measurement campaign. A statistical analysis was performed by comparing the measured on-body path loss to five well-known distributions; lognormal, normal, Nakagami, Weibull and Rayleigh. The results showed that the average path loss of moving arm varied higher than the path loss in sitting position for upper-arm-to-left-chest link, up to 3.5 dB. The analysis also concluded that the Nakagami distribution provided the best fit for most of on-body static link path loss in standing still and sitting position, while the arm movement can be best described by log-normal distribution.

Keywords: on-body channel communications, fading characteristics, statistical model, body movement

Procedia PDF Downloads 357
28142 Obstructive Bronchitis and Pneumonia by a Mixed Infection of HPIV- 3, S. pneumoniae in an Immunocompromised 10M Infant: Case Report

Authors: Olga Smilevska Spasova, Katerina Boshkovska, Gorica Popova, Mirjana Popovska

Abstract:

Introduction: Pneumonia is an infection of the pulmonary parenchyma. HPIV 3 is one of four viruses that is a member of the Paramyxoviridae family designated types 1-4 that have a nonsegmented, single-stranded RNA genome with a lipid-containing envelope. They are spread from the respiratory tract by aerosolized secretions or by direct contact with secretions. Type 3 is endemic and can cause serious illness in immunocompromised patients. Illness caused by parainfluenza occurs shortly after inoculation with the virus. The level of immunoglobulin A antibody in serum is the best predictor of susceptibility to infection. Streptococcus pneumonia or pneumococcus is a Gram-positive, spherical bacteria, usually found in pairs and it is a member of the genus Streptococcus. Streptococcus pneumonia resides asymptomatically in healthy carriers typically colonizing the respiratory tract, sinuses, and nasal cavity. In individuals with weaker immune systems like young infants, pneumococcal bacterium is the most common cause of community-acquired pneumonia in the world. Case Report: The aim is to present a case of lower respiratory tract infection in an infant caused by parainfluenza virus 3, S. pneumonia and undifferentiated gram-negative bacteria that was successfully treated. The infant is with a history of recurrent episodes of wheezing in the past 3mounts.Infant of 10months presents 2weeks before admittance with high fever, runny nose, and cough. The primary pediatrician prescribed oral cefpodoxime for 10days and inhaled salbutamol. Two days before admittance in hospital the infant with high fever, cough, and difficulty breathing. At admittance, infant is pale, anxious with rapid respirations, cough, wheezing and tachycardia. On auscultation: vesicular breathing sounds with high pitched wheezing and on the right coarse crackles. Investigations: Blood analysis: RBC: 4, 7 x1012L, WBC: 8,3x109L: Neut: 42.73% Lym: 41.57%, Hgb: 9.38 g/dl MCV: 62.7fl, MCH: 20.0pg MCHC: 31.8 g/dl RDW: 18.7% Plt-307.9 x109LCRP: 2,5mg/l, serum iron-7.92umol/l, O2sat-97% on blood gas analysis, puls-125/min.X-ray of chest with hyperinflationand right pericardial consolidation. Microbiological analysis of sputum sample is positive for undifferentiated gram-negative bacteria (colonizer)–resistant to cefotaxime, ampicillin, cefoxitin, sulfamet.+trimetoprim and sensitive to amikacin, gentamicin, and ciprofloxacin. Molecular multiplex RT-PCR for 19 viruses and multiplex PCR for 7 bacteria test for respiratory pathogens positive for Parainfluenza virus 3(Ct=22.73), Streptococcus pneumonia (Ct=26.75).IED: IgG-9.31g/l, IgA-0.351g/l, IgM-0.86g/l. Therapy: Treatment was started with inhaled salbutamol, intravenous antibiotic cefotaxime as well as systemic corticosteroids. On day 7 because of slow clinical resolution of chest auscultation findings and an etiologic clue with a positive sputum sample for resistant undifferentiated gram negative bacteria, a second intravenous antibiotic was administered amikacin. The infant is discharged on day 14 with resolution of clinical findings. Conclusion: Mixed co-infections with respiratory viruses and bacteria in immunocompromised infants are likely to lead to a more severe form of community acquired pneumonia that will need hospitalization.

Keywords: HPIV- 3, infant, pneumonia, S. pneumonia, x-ray chest

Procedia PDF Downloads 78
28141 Uncommon Presentation of Iscahemic Heart Disease with Sheehan’s Syndrome at Mid-Level Private Hospital of Bangladesh and Its Management- A Case Report

Authors: Nazmul Haque, Syeda Tasnuva Maria

Abstract:

Sheehan's Syndrome (SS), also known as postpartum hypopituitarism, is a rare but potentially serious condition resulting from ischemic necrosis of the pituitary gland, often occurring during or after childbirth. This syndrome is characterized by hypopituitarism, leading to deficiencies in various hormones produced by the pituitary gland. The primary cause is typically severe postpartum hemorrhage, leading to inadequate blood supply and subsequent necrosis of the pituitary tissue. This chronic hypopituitarism sometimes plays the role of premature atherosclerosis, which may lead to cardiovascular disease. This abstract provides a comprehensive overview of Sheehan's Syndrome with ischaemic heart disease, encompassing its pathophysiology, clinical manifestations, and current management strategies. The disorder presents a wide spectrum of symptoms, including chest pain, fatigue, amenorrhea, lactation failure, hypothyroidism, and adrenal insufficiency. Timely diagnosis is crucial, as delayed recognition can lead to complications and long-term health consequences. We herein report a patient complaining of chronic fatigue symptoms, aggressiveness, chest pain, and breathlessness with repeated LOC that were diagnosed with SS with IHD. The patient was treated with antiplatelet, antianginal, steroids, and hormone replacement with marked improvement in his overall condition.

Keywords: ischaemic heart disease, Sheehan's syndrome, post-partum haemorrhage, pituitary gland

Procedia PDF Downloads 61
28140 Covid-19 Frontliners Survey: Assessing Complications and Quality of Life in Health Care Workers in District Swat, Khyber Pakhtunkhwa, Pakistan

Authors: Mohsin Shahab, Shagufta Rehmat, Faisal F. Khan

Abstract:

Background: The global COVID-19 pandemic has generated health problems worldwide. Health care workers are the front-line warriors against the pandemic. The aim of this study was to find out the prevalence of COVID-19 (7th May 2021 to 3rd August 2021) amongst Health Care Workers (HCWs) and to assess the complications associated with it and its effects on their quality of life. Material and Method: The study was conducted in healthcare facilities which serve as pandemic hospitals in district Swat. A total of 140 healthcare workers, who were employed in the COVID-19 health care facilities, including the department of Pulmonology, Intensive Care Unit (ICU), and COVID-19 wards. Participants were tested for COVIID-19 using RT PCR test. A Case Report Form (CRF) for conditions during and post COVID-19 was filled to assess the complications and quality of life of health care workers. Results: A total of 140 Health Care Workers were studied, out of which 40% were doctors, 22% nursing staff, 17% paramedic staff, 9% cleaning staff, lab technologist 6%, 2% operation theater staff, administration staff, and pharmacist. The respondents were also investigated for pre-existing illness prior to SARS-CoV-2 infection, hypertension was the most prevalent, followed by chronic heart diseases and neurological disorders. Fever was the most common symptom, recorded 76.42% in the participants, while 55.71% of participants had dry cough, 55% had a sore throat, following by chest pain 43.56%. Reinfection rate was 10%, with chest pain being recorded in 85.71%. Post disease complication analysis showed that 47.14% of the participants were diagnosed with a new diagnosis after the COVID-19 recovery. Pulmonological diseases were recorded the most as a new diagnosis in, followed by gastrointestinal and psychological problems. Conclusions: The results of the study illustrates how COVID-19 has affected the overall health and quality of life of HCWs in District Swat of Khyber Pakhtunkhwa, Pakistan.

Keywords: SARS-CoV-2, COVID-19, HCW's, symptoms, questionnaire, post COVID-19

Procedia PDF Downloads 278
28139 Current Applications of Artificial Intelligence (AI) in Chest Radiology

Authors: Angelis P. Barlampas

Abstract:

Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.

Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses

Procedia PDF Downloads 74
28138 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 660
28137 Slovenia in the Heart of Europe

Authors: M. Žibert, T. Špindler, S. Uhan, A. Lisec

Abstract:

We can find Slovenia in the heart of Europe and has really good geographical location. With same slogan are promoted Switzerland, Montenegro, Greece and probably many others. However, from anatomic point of view, injustice is being made to someone because the heart is placed only in left part of chest cavity and there we can`t find place for the entire territory from Switzerland to the south of Balkan.

Keywords: Ljubljana, logistics, Slovenia, tourism

Procedia PDF Downloads 377
28136 An Extended X-Ray Absorption Fine Structure Study of CoTi Thin Films

Authors: Jose Alberto Duarte Moller, Cynthia Deisy Gomez Esparza

Abstract:

The cobalt-titanium system was grown as thin films in an INTERCOVAMEX V3 sputtering system, equipped with four magnetrons assisted by DC pulsed and direct DC. A polished highly oriented (400) silicon wafer was used as substrate and the growing temperature was 500 oC. Xray Absorption Spectroscopy experiments were carried out in the SSRL in the 4-3 beam line. The Extenden X-Ray Absorption Fine Structure spectra have been numerically processed by WINXAS software from the background subtraction until the normalization and FFT adjustment. Analyzing the absorption spectra of cobalt in the CoTi2 phase we can appreciate that they agree in energy with the reference spectra that corresponds to the CoO, which indicates that the valence where upon working is Co2+. The RDF experimental results were then compared with those RDF´s generated theoretically by using FEFF software, from a model compound of CoTi2 phase obtained by XRD. The fitting procedure is a highly iterative process. Fits are also checked in R-space using both the real and imaginary parts of Fourier transform. Finally, the presence of overlapping coordination shells and the correctness of the assumption about the nature of the coordinating atom were checked.

Keywords: XAS, EXAFS, FEFF, CoTi

Procedia PDF Downloads 298
28135 Highlighting Adverse Effects of Privatization of Heritage on Taj Mahal and Providing Solutions to Improve the Condition without Privatizing

Authors: Avani Saraswat

Abstract:

The paper studies the present condition of Taj Mahal (the UNESCO world heritage site) and the reasons behind deterioration. Analysis is done to explore the reasons behind this building to be included in the list of adopt heritage scheme, by the Government of India. The aim is to find out the future effects on Taj Mahal after being adopted by a private body. Finally, it suggests solutions which can lead to improvement of the present condition of the building. In order to establish a research, a further analysis is done through a case study of Red Fort, New Delhi (another UNESCO world heritage site). This monument was given to Dalmia Group of India Pvt. Ltd. for the tenure of 5 years. Paper discusses the consequences of privatization on Red Fort and then analyze it for Taj Mahal. It terms monument as riches of a heritage chest, not as a commercial tourist place. The study is concluded with the ideas and suggestions proposed for saving Taj Mahal and advantages on improving the health of the building.

Keywords: privatisation of heritage, heritage, Taj Mahal, adopt heritage scheme

Procedia PDF Downloads 150
28134 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 419
28133 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 75
28132 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients

Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu

Abstract:

Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.

Keywords: chest radiography, coronavirus, COVID-19, RALE score

Procedia PDF Downloads 180