Search results for: shared/mental models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9332

Search results for: shared/mental models

8522 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 483
8521 Mental Health Promotion for Children of Mentally Ill Parents in Schools. Assessment and Promotion of Teacher Mental Health Literacy in Order to Promote Child Related Mental Health (Teacher-MHL)

Authors: Dirk Bruland, Paulo Pinheiro, Ullrich Bauer

Abstract:

Introduction: Over 3 million children, about one quarter of all students, experience at least one parent with mental disorder in Germany every year. Children of mentally-ill parents are at considerably higher risk of developing serious mental health problems. The different burden patterns and coping attempts often become manifest in children's school lives. In this context, schools can have an important protective function, but can also create risk potentials. In reference to Jorm, pupil-related teachers’ mental health literacy (Teacher-MHL) includes the ability to recognize change behaviour, the knowledge of risk factors, the implementation of first aid intervention, and seeking professional help (teacher as gatekeeper). Although teachers’ knowledge and increased awareness of this topic is essential, the literature provides little information on the extent of teachers' abilities. As part of a German-wide research consortium on health literacy, this project, launched in March for 3 years, will conduct evidence-based mental health literacy research. The primary objective is to measure Teacher-MHL in the context of pupil-related psychosocial factors at primary and secondary schools (grades 5 & 6), while also focussing on children’s social living conditions. Methods: (1) A systematic literature review in different databases to identify papers with regard to Teacher-MHL (completed). (2) Based on these results, an interview guide was developed. This research step includes a qualitative pre-study to inductively survey the general profiles of teachers (n=24). The evaluation will be presented on the conference. (3) These findings will be translated into a quantitative teacher survey (n=2500) in order to assess the extent of socio-analytical skills of teachers as well as in relation to institutional and individual characteristics. (4) Based on results 1 – 3, developing a training program for teachers. Results: The review highlights a lack of information for Teacher-MHL and their skills, especially related to high-risk-groups like children of mentally ill parents. The literature is limited to a few studies only. According to these, teacher are not good at identifying burdened children and if they identify those children they do not know how to handle the situations in school. They are not sufficiently trained to deal with these children, especially there are great uncertainties in dealing with the teaching situation. Institutional means and resources are missing as well. Such a mismatch can result in insufficient support and use of opportunities for children at risk. First impressions from the interviews confirm these results and allow a greater insight in the everyday school-life according to critical life events in families. Conclusions: For the first time schools will be addressed as a setting where children are especially "accessible" for measures of health promotion. Addressing Teacher-MHL gives reason to expect high effectiveness. Targeting professionals' abilities for dealing with this high-risk-group leads to a discharge for teacher themselves to handle those situations and increases school health promotion. In view of the fact that only 10-30% of such high-risk families accept offers of therapy and assistance, this will be the first primary preventive and health-promoting approach to protect the health of a yet unaffected, but particularly burdened, high-risk group.

Keywords: children of mentally ill parents, health promotion, mental health literacy, school

Procedia PDF Downloads 545
8520 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: global warming, rainfall, CMIP5, CORDEX, NWH

Procedia PDF Downloads 169
8519 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training

Authors: Yuchien Lin

Abstract:

This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.

Keywords: meditation, EEG, emotion regulation, gamma activity

Procedia PDF Downloads 213
8518 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 75
8517 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 134
8516 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models

Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães

Abstract:

This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.

Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method

Procedia PDF Downloads 149
8515 Developing Location-allocation Models in the Three Echelon Supply Chain

Authors: Mehdi Seifbarghy, Zahra Mansouri

Abstract:

In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.

Keywords: location, multi-echelon supply chain, covering, goal programming

Procedia PDF Downloads 559
8514 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
8513 An Assessment of Electrical Activities of Students' Brains toward Teacher’s Specific Emotions

Authors: Hakan Aydogan, Fatih Bozkurt, Huseyin Coskun

Abstract:

In this study, the signal of brain electrical activities of the sixteen students selected from the Department of Electrical and Energy at Usak University have been recorded during a lecturer performed happiness emotions for the first group and anger emotions for the second group in different time while the groups were in the classroom separately. The attention and meditation data extracted from the recorded signals have been analyzed and evaluated toward the teacher’s specific emotion states simultaneously. Attention levels of students who are under influence of happiness emotions of the lecturer have a positive trend and attention levels of students who are under influence of anger emotions of the lecturer have a negative trend. The meditation or mental relaxation levels of students who are under influence of happiness emotions of the lecturer are 34.3% higher comparing with the mental relaxation levels of students who are under influence of anger emotions of the lecturer.

Keywords: brainwave, attention, meditation, education

Procedia PDF Downloads 419
8512 A Comparative Study of Selected Psychological Variable of Basketball and Volleyball Sportsperson of Bangladesh Krirra Shiskha Protifsthan

Authors: M. Ashadur Rahman

Abstract:

This study presents the psychological status of basketball and volleyball sportspersons of Bangladesh Krira Shikkha Protifsthan (BKSP) in Bangladesh. The subjects of the study were 34 sportspersons which were 20 Basketball and 14 Volleyball Sportspersons in BKSP. The age ranges of the subjects were 15 to 20 years. The subjects were all male sportspersons and regular students of BKSP. Anxiety control, concentration, confidence, mental preparation, and motivation were selected as psychological variables. Psychological Skill Inventory for Sport (PST) prepared by Mahoney Gabiel, Perking (1987) was used to assess the psychological skills of sportspersons to different sports. Mean standard deviation and independent t-test were used to analyze the data, and level of significance was set at 0.05. Significant differences were not found between psychological status between basketball and volleyball sportspersons of BKSP in Bangladesh.

Keywords: psychological variable, anxiety control, concentration, confidence, mental preparation, motivation

Procedia PDF Downloads 199
8511 A Model Outlining Feelings vs. Emotions and Why Distinction is Critical

Authors: Brendan Mooney

Abstract:

Context: Feelings and emotions are commonly misunderstood and the terms often used interchangeably, leading to potential negative impacts on individuals' mental well-being and relationships. The distinction between these two fundamentally different experiences of human life is crucial for effective psychological practice and communication. Research Aim: The aim of this study is to outline the disparities between feelings and emotions, emphasising the significance of this differentiation in psychological practice to enhance clients' observation, decision-making, problem-solving, and communication skills. Methodology: This research utilises a conceptual model developed by the author in 2017 based on clinical experience, client observations, and feedback. The model serves to guide effective clinical practice by providing clear definitions and understanding of feelings versus emotions. Case study examples were utilised to support the efficacy of the model. Findings: The study highlights that recognising and expressing feelings rather than emotions is more empowering and conducive to resolving unresolved issues, thereby fostering better psychological well-being and interpersonal relationships. Theoretical Importance: This research underscores the importance of clarifying fundamental definitions related to feelings and emotions in enhancing psychological interventions and preventing various relationship conflicts and individual issues. Data Collection and Analysis Procedures: Data was collected through the author's clinical experience and interactions with clients, informing the development of the Feeling Emotions Mental (FEM) model. Analysis involved synthesising observations and feedback to elucidate the distinctions between feelings and emotions. Questions Addressed: What are the disparities between feelings and emotions? How does the confusion between these two fundamentally different experiences of human life impact individuals' mental well-being and relationships? Why is it essential to differentiate between feelings and emotions in psychological practice? Conclusion: The study advocates for a clear understanding of feelings versus emotions to support clients in addressing unresolved issues and improving their overall psychological functioning and communication skills, thereby preventing potential conflicts and relationship challenges.

Keywords: couples, mental, misinformation, misunderstanding, relationships

Procedia PDF Downloads 40
8510 Determining the Prevalence and Correlates of Depression among Transgenders of a Developing Country

Authors: Usama Bin Zubair, Muhammad Azeem

Abstract:

Introduction: Depression has been one of the most commonly diagnosed mental health disorders in Pakistan. A Census conducted by the government of Pakistan in 2017 showed that more than 10000 trans-genders live in Pakistan. HIV, illicit substance use and mental health issues, including depression, have been the main health problems faced by them. Trans-gender population has been suffering from depressive illness more than normal population all over the world. Aim: To assess the prevalence of depression among the transgender population and analyze the relationship of socio-demographic factors with depression. Subjects and Methods: The sample population comprised of one hundred and forty-two transgender people of Rawalpindi and Islamabad. Beck depressive inventory II (BDI-II) was used to record the presence and severity of the depressive symptoms. Depressive symptoms were categorized as mild, moderate and severe. Relationship of the age, smoking, family income, illicit substance use and education were studied with the presence of depressive symptoms among these transgender people of twin cities of Pakistan. Results: A total of 142 transgender people were included in the final analysis. The mean age of the study participants was 39.55 ± 6.18. Out of these, 45.1% had no depressive symptoms while 31.7% had mild, 12.7% had moderate and 10.6% had severe depressive symptomatology. After applying the binary logistic regression, we found that the presence of depressive symptoms had a significant association with illicit substance use among the target population. Conclusion: This study showed a high prevalence of depressive symptoms among the transgender population in the twin cities of Pakistan. Use of illicit substances like tobacco, cannabis, opiates, and alcohol should be discouraged to prevent mental health problems.

Keywords: depression, transgender, prevalence, sociodemographic factors

Procedia PDF Downloads 121
8509 Intensive Use of Software in Teaching and Learning Calculus

Authors: Nodelman V.

Abstract:

Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.

Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax

Procedia PDF Downloads 81
8508 The Principle of a Thought Formation: The Biological Base for a Thought

Authors: Ludmila Vucolova

Abstract:

The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.

Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought

Procedia PDF Downloads 384
8507 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
8506 Nanoparticles on Biological Biomarquers Models: Paramecium Tetraurelia and Helix aspersa

Authors: H. Djebar, L. Khene, M. Boucenna, M. R. Djebar, M. N. Khebbeb, M. Djekoun

Abstract:

Currently in toxicology, use of alternative models permits to understand the mechanisms of toxicity at different levels of cells. Objectives of our research concern the determination of NPs ZnO, TiO2, AlO2, and FeO2 effect on ciliate protist freshwater Paramecium sp and Helix aspersa. The result obtained show that NPs increased antioxidative enzyme activity like catalase, glutathione –S-transferase and level GSH. Also, cells treated with high concentrations of NPs showed a high level of MDA. In conclusion, observations from growth and enzymatic parameters suggest on one hand that treatment with NPs provokes an oxidative stress and on the other that snale and paramecium are excellent alternatives models for ecotoxicological studies.

Keywords: NPs, GST, catalase, GSH, MDA, toxicity, snale and paramecium

Procedia PDF Downloads 282
8505 Co-produced Databank of Tailored Messages to Support Enagagement to Digitial Health Interventions

Authors: Menna Brown, Tania Domun

Abstract:

Digital health interventions are effective across a wide array of health conditions spanning physical health, lifestyle behaviour change, and mental health and wellbeing; furthermore, they are rapidly increasing in volume within both the academic literature and society as commercial apps continue to proliferate the digital health market. However, adherence and engagement to digital health interventions remains problematic. Technology-based personalised and tailored reminder strategies can support engagement to digital health interventions. Interventions which support individuals’ mental health and wellbeing are of critical importance in the wake if the COVID-19 pandemic. Student and young person’s mental health has been negatively affected and digital resources continue to offer cost effective means to address wellbeing at a population level. Develop a databank of digital co-produced tailored messages to support engagement to a range of digital health interventions including those focused on mental health and wellbeing, and lifestyle behaviour change. Qualitative research design. Participants discussed their views of health and wellbeing, engagement and adherence to digital health interventions focused around a 12-week wellbeing intervention via a series of focus group discussions. They worked together to co-create content following a participatory design approach. Three focus group discussions were facilitated with (n=15) undergraduate students at one Welsh university to provide an empirically derived, co-produced, databank of (n=145) tailored messages. Messages were explored and categorised thematically, and the following ten themes emerged: Autonomy, Recognition, Guidance, Community, Acceptance, Responsibility, Encouragement, Compassion, Impact and Ease. The findings provide empirically derived, co-produced tailored messages. These have been made available for use, via ‘ACTivate your wellbeing’ a digital, automated, 12-week health and wellbeing intervention programme, based on acceptance and commitment therapy (ACT). The purpose of which is to support future research to evaluate the impact of thematically categorised tailored messages on engagement and adherence to digital health interventions.

Keywords: digital health, engagement, wellbeing, participatory design, positive psychology, co-production

Procedia PDF Downloads 121
8504 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females

Authors: James Beauchemin

Abstract:

Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue, with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-groups analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women, and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation may be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population, while providing an alternative or complementary treatment option for those with current symptoms.

Keywords: yoga, mental health, incarceration, wellness

Procedia PDF Downloads 138
8503 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
8502 Effectiveness of Acceptance and Commitment Therapy on Reducing Corona Disease Anxiety in the Staff Working in Shahid Beheshti Hospital of Shiraz

Authors: Gholam Reza Mirzaei

Abstract:

This research aimed to investigate the effectiveness of acceptance and commitment therapy (ACT) in reducing corona disease anxiety in the staff working at Shahid Beheshti Hospital of Shiraz. The current research was a quasi-experimental study having pre-test and post-test with two experimental and control groups. The statistical population of the research included all the staff of Shahid Beheshti Hospital of Shiraz in 2021. From among the statistical population, 30 participants (N =15 in the experimental group and N =15 in the control group) were selected by available sampling. The materials used in the study comprised the Cognitive Emotion Regulation Questionnaire (CERQ) and Corona Disease Anxiety Scale (CDAS). Following data collection, the participants’ scores were analyzed using SPSS 20 at both descriptive (mean and standard deviation) and inferential (analysis of covariance) levels. The results of the analysis of covariance (ANCOVA) showed that acceptance and commitment therapy (ACT) is effective in reducing Corona disease anxiety (mental and physical symptoms) in the staff working at Shahid Beheshti Hospital of Shiraz. The effectiveness of acceptance and commitment therapy (ACT) on reducing mental symptoms was 25.5% and on physical symptoms was 13.8%. The mean scores of the experimental group in the sub-scales of Corona disease anxiety (mental and physical symptoms) in the post-test were lower than the mean scores of the control group.

Keywords: acceptance and commitment therapy, corona disease anxiety, hospital staff, Shiraz

Procedia PDF Downloads 40
8501 Exposure to Bullying and General Psychopathology: A Prospective, Longitudinal Study

Authors: Jolien Rijlaarsdam, Charlotte A. M. Cecil, J. Marieke Buil, Pol A. C. Van Lier, Edward D. Barker

Abstract:

Although there is mounting evidence that the experience of being bullied associates with both internalizing and externalizing symptoms, it is not known yet whether the identified associations are specific to these symptoms or shared between them. The primary focus of this study is to assess the prospective associations of bullying exposure with both general and specific (i.e., internalizing, externalizing) factors of psychopathology. This study included data from 6,210 children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Child bullying was measured by self-report at ages 8 and 10 years. Child psychopathology symptoms were assessed by parent-interview, using the Development and Well-being Assessment (DAWBA) at ages 7 and 13 years. Bullying exposure is significantly associated with the general psychopathology factor in early adolescence. In particular, chronically victimized youth exposed to multiple forms of bullying (i.e., both overt and relational) showed the highest levels of general psychopathology. Bullying exposure is also associated with both internalizing and externalizing factors from the correlated-factors model. However, the effect estimates for these factors decreased considerably in size and dropped to insignificant for the internalizing factor after extracting the shared variance that belongs to the general factor of psychopathology. In an integrative longitudinal model, higher levels of general psychopathology at age seven are associated with bullying exposure at age eight, which, in turn, is associated with general psychopathology at age 13 through its two-year continuity. Findings suggest that exposure to bullying is a risk factor for a more general vulnerability to psychopathology through mutually influencing relationships.

Keywords: bullying exposure, externalizing, general psychopathology, internalizing, longitudinal

Procedia PDF Downloads 139
8500 A Novel Algorithm for Parsing IFC Models

Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai

Abstract:

Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD).

Keywords: BIM, CAD, IFC, MVD

Procedia PDF Downloads 300
8499 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows

Authors: Daniel Fulus Fom, Gau Patrick Damulak

Abstract:

In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.

Keywords: auto regressive, mean absolute error, neural network, root square mean error

Procedia PDF Downloads 268
8498 A Systematic Review of the Transportability of Cognitive Therapy for the Treatment of PTSD among South African Survivors of Rape

Authors: Anita Padmanabhanunni

Abstract:

Trauma-focused cognitive-treatment (CT) models are among the most efficacious in treating PTSD arising from exposure to rape. However, these treatment approaches are severely under-utilised by South African mental health care practitioners owing to concerns around whether treatments developed in Western clinical contexts are transportable and applicable in routine clinical settings. One way of promoting the use of these efficacious treatments in local contexts is by identifying and appraising the evidence from local outcome studies. This paper presents the findings of a systematic review of research evidence from local outcome studies on the effectiveness of CT in the treatment of rape-related PTSD in South Africa. The study found that whilst limited research has been published in South Africa on the outcome of CT in the treatment of rape survivors, the studies that are available afford insights into the effectiveness of CT.

Keywords: cognitive treatment, PTSD, South Africa, transportability

Procedia PDF Downloads 339
8497 Disagreement among the United Nations Human Rights Bodies over the Legality of Deprivation of Liberty on the Grounds of Mental Disability

Authors: Ravan Samadov

Abstract:

Mentally disabled people are the most discriminated against among other disabled people and face much stronger negative attitudes across many cultures. The most complex and severe form of exclusion of these people is deprivation of liberty on the grounds of their disability. This problem was for many years overlooked to a great extent by the core human rights instruments. However, the United Nations (UN) Convention on the Rights of Persons with Disabilities (CRPD), adopted in 2006, is considered a potential tool to successfully fill the gap. It is especially vital for the developing countries with the vast majority of disabled people of the world and the CRPD is presumed to be able to trigger drastic positive changes. Article 14 of the mentioned human rights treaty has brought into the international forum a new notion, as prohibits deprivation of liberty on the grounds of disability. It is to be understood as an absolute prohibition of deprivation of liberty on the grounds of disability, including mental disability, which manifests in the form of non-consensual psychiatric hospitalisation. The interpretation by the CRPD Committee indicates that this prohibition well embraces all types of non-consensual psychiatric hospitalisation – whether it is based on illness, impairment or disability. This prohibition also extends to such justifications as ‘dangerousness’, ‘need for treatment’ and ‘diminished capacity’. Moreover, providing due substantive and/or procedural safeguards does not render any legitimacy to application of deprivation of liberty on the grounds of mental disability. Logically, this new prohibition form was to be duly considered by different UN human rights bodies, and was subsequently to bring changes to their practices. However, the analyses of post-CRPD work of those bodies allows for asserting the contrary, as they have continued displaying the position which recognises deprivation of liberty on the grounds of disability to be legitimate. While such a position could be justified in the pre-CRPD time as stemming from the silence of human rights documents about it, the continuation of this course after the CRPD entered into force may call the integrity and coherence of the UN human rights treaty system into question. The non-coherent approaches of different UN bodies to this novelty give grounds for misinterpretation thereof, and hinder its due implementation by the States Parties. The paper will discuss the nature of the mentioned new prohibition and the controversial approaches to that notion by different UN human rights bodies.

Keywords: CRPD, deprivation of liberty, mental disability, non-consensual psychiatric hospitalisation, UN bodies

Procedia PDF Downloads 337
8496 Key Factors for Stakeholder Engagement and Sustainable Development

Authors: Jo Rhodes, Bruce Bergstrom, Peter Lok, Vincent Cheng

Abstract:

The aim of this study is to determine key factors and processes for multinationals (MNCs) to develop an effective stakeholder engagement and sustainable development framework. A qualitative multiple-case approach was used. A triangulation method was adopted (interviews, archival documents and observations) to collect data on three global firms (MNCs). 9 senior executives were interviewed for this study (3 from each firm). An initial literature review was conducted to explore possible practices and factors (the deductive approach) to sustainable development. Interview data were analysed using Nvivo to obtain appropriate nodes and themes for the framework. A comparison of findings from interview data and themes, factors developed from the literature review and cross cases comparison were used to develop the final conceptual framework (the inductive approach). The results suggested that stakeholder engagement is a key mediator between ‘stakeholder network’ (internal and external factors) and outcomes (corporate social responsibility, social capital, shared value and sustainable development). Key internal factors such as human capital/talent, technology, culture, leadership and processes such as collaboration, knowledge sharing and co-creation of value with stakeholders were identified. These internal factors and processes must be integrated and aligned with external factors such as social, political, cultural, environment and NGOs to achieve effective stakeholder engagement.

Keywords: stakeholder, engagement, sustainable development, shared value, corporate social responsibility

Procedia PDF Downloads 513
8495 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels

Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira

Abstract:

Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.

Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel

Procedia PDF Downloads 469
8494 Development of Active Learning Calculus Course for Biomedical Program

Authors: Mikhail Bouniaev

Abstract:

The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.

Keywords: active learning, assessment, calculus, cognitive demand, mathematics, stage-by-stage development of mental action theory

Procedia PDF Downloads 360
8493 Exploring the Dose-Response Association of Lifestyle Behaviors and Mental Health among High School Students in the US: A Secondary Analysis of 2021 Adolescent Behaviors and Experiences Survey Data

Authors: Layla Haidar, Shari Esquenazi-Karonika

Abstract:

Introduction: Mental health includes one’s emotional, psychological, and interpersonal well-being; it ranges from “good” to “poor” on a continuum. At the individual-level, it affects how a person thinks, feels, and acts. Moreover, it determines how they cope with stress, relate to others, and interface with their surroundings. Research has yielded that mental health is directly related with short- and long-term physical health (including chronic disease), health risk behaviors, education-level, employment, and social relationships. As is the case with physical conditions like diabetes, heart disease, and cancer, mitigating the behavioral and genetic risks of debilitating mental health conditions like anxiety and depression can nurture a healthier quality of mental health throughout one’s life. In order to maximize the benefits of prevention, it is important to identify modifiable risks and develop protective habits earlier in life. Methods: The Adolescent Behaviors and Experiences Survey (ABES) dataset was used for this study. The ABES survey was administered to high school students (9th-12th grade) during January 2021- June 2021 by the Centers for Disease Control and Prevention (CDC). The data was analyzed to identify any associations between feelings of sadness, hopelessness, or increased suicidality among high school students with relation to their participation on one or more sports teams and their average daily consumed screen time. Data was analyzed using descriptive and multivariable analytic techniques. A multinomial logistic regression of each variable was conducted to examine if there was an association, while controlling for grade-level, sex, and race. Results: The findings from this study are insightful for administrators and policymakers who wish to address mounting concerns related to student mental health. The study revealed that compared to a student who participated on zero sports teams, students who participated in 1 or more sports teams showed a significantly increased risk of depression (p<0.05). Conversely, the rate of depression in students was significantly less in those who consumed 5 or more hours of screen time per day, compared to those who consumed less than 1 hour per day of screen time (p<0.05). Conclusion: These findings are informative and highlight the importance of understanding the nuances of student participation on sports teams (e.g., physical exertion, social dynamics of team, and the level of competitiveness within the sport). Likewise, the context of an individual’s screen time (e.g., social media, engaging in team-based video games, or watching television) can inform parental or school-based policies about screen time activity. Although physical activity has been proven to be important for emotional and physical well-being of youth, playing on multiple teams could have negative consequences on the emotional state of high school students potentially due to fatigue, overtraining, and injuries. Existing literature has highlighted the negative effects of screen time; however, further research needs to consider the type of screen-based consumption to better understand its effects on mental health.

Keywords: behavioral science, mental health, adolescents, prevention

Procedia PDF Downloads 105