Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 522

Search results for: rainfall

522 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales

Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng


Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.

Keywords: landslides, modelling, rainfall, suction

Procedia PDF Downloads 45
521 An Investigation of Trends and Variability of Rainfall in Shillong City

Authors: Kamal Kumar Tanti, Nayan Moni Saikia, Markynti Swer


This study aims to investigate and analyse the trends and variability of rainfall in Shillong and its nearby areas, located in Meghalaya hills of North-East India; which is geographically a neighbouring area to the wettest places of the Earth, i.e., Cherrapunji and Mawsynram. The analysis of variability and trends to annual, seasonal, monthly and daily rainfall was carried out, using the data collected from the IMD station at Shillong; thereby attempting to highlight whether rainfall in Shillong area has been increasing or decreasing over the years. Rainfall variability coefficient is utilized to compare the current rainfall trend of the area with its past rainfall trends. The present study also aims to analyse the frequency of occurrence of extreme rainfall events over the region. These studies will help us to establish a correlation between the current rainfall trend and climate change scenario of the study area.

Keywords: trends and variability of rainfall, annual, seasonal, monthly and daily rainfall, rainfall variability coefficient, extreme rainfall events, climate change, Shillong, Cherrapunji, Mawsynram

Procedia PDF Downloads 162
520 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban


The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 263
519 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain

Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz


Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.

Keywords: meteosat, radar, rainfall, rain-gauge, Turkey

Procedia PDF Downloads 165
518 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim


Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 142
517 Rainfall Estimation Using Himawari-8 Meteorological Satellite Imagery in Central Taiwan

Authors: Chiang Wei, Hui-Chung Yeh, Yen-Chang Chen


The objective of this study is to estimate the rainfall using the new generation Himawari-8 meteorological satellite with multi-band, high-bit format, and high spatiotemporal resolution, ground rainfall data at the Chen-Yu-Lan watershed of Joushuei River Basin (443.6 square kilometers) in Central Taiwan. Accurate and fine-scale rainfall information is essential for rugged terrain with high local variation for early warning of flood, landslide, and debris flow disasters. 10-minute and 2 km pixel-based rainfall of Typhoon Megi of 2016 and meiyu on June 1-4 of 2017 were tested to demonstrate the new generation Himawari-8 meteorological satellite can capture rainfall variation in the rugged mountainous area both at fine-scale and watershed scale. The results provide the valuable rainfall information for early warning of future disasters.

Keywords: estimation, Himawari-8, rainfall, satellite imagery

Procedia PDF Downloads 86
516 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience

Authors: Ibrahim Suliman Hanaish


Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.

Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model

Procedia PDF Downloads 379
515 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade


The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 144
514 Spatial Temporal Rainfall Trends in Australia

Authors: Bright E. Owusu, Nittaya McNeil


Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.

Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.

Procedia PDF Downloads 236
513 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos


The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: classification, fuzzy logic, tolerance relations, rainfall data

Procedia PDF Downloads 183
512 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan


Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: flood, HEC-HMS, prediction, rainfall, runoff

Procedia PDF Downloads 247
511 Potential of Landslides Based On Maximum Monthly Rainfall in Sumber Sari Village Watershed Tirtomoyo Wonogiri Indonesia

Authors: Heny Pratiwi, Niken Silmi Surjandari, Noegroho Djarwanti


This study was conducted to determine the potential for landslides as a result of monthly rainfall in a watershed. Rainfall data that will be used is rainfall from years 2007-2011. Research methods created by modeling the slope on some variation of angle in a row 30◦, 45◦, and 60◦ with a homogeneous layer of soil. Slope Stability Analysis using Method Fellenius. The results of the slope stability analysis without rain on slope 30◦, 45◦, and 60◦ respectively 1.3846, 1.0115, and 0.7284. Results in the absence of rain showed that the slope on the slope 45◦ are in critical condition and on a slope with a slope 60◦ already avalanche with safety factor value <1. The results in the rainy conditions shows slopes 30◦ are in critical condition with a value factor <1 due to the intensity of monthly rainfall> 250 mm/month.

Keywords: slope stability, monthly rainfall, infiltration, safety factor, Fellenius method

Procedia PDF Downloads 324
510 Spatial Variation of WRF Model Rainfall Prediction over Uganda

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Triphonia Ngailo


Rainfall is a major climatic parameter affecting many sectors such as health, agriculture and water resources. Its quantitative prediction remains a challenge to weather forecasters although numerical weather prediction models are increasingly being used for rainfall prediction. The performance of six convective parameterization schemes, namely the Kain-Fritsch scheme, the Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D scheme, the Grell-Fretas scheme, the New Tiedke scheme of the weather research and forecast (WRF) model regarding quantitative rainfall prediction over Uganda is investigated using the root mean square error for the March-May (MAM) 2013 season. The MAM 2013 seasonal rainfall amount ranged from 200 mm to 900 mm over Uganda with northern region receiving comparatively lower rainfall amount (200–500 mm); western Uganda (270–550 mm); eastern Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A spatial variation in simulated rainfall amount by different convective parameterization schemes was noted with the Kain-Fritsch scheme over estimating the rainfall amount over northern Uganda (300–750 mm) but also presented comparable rainfall amounts over the eastern Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny, and the Grell-3D underestimated the rainfall amount over most parts of the country especially the eastern region (300–600 mm). The Grell-Fretas captured rainfall amount over the northern region (250–450 mm) but also underestimated rainfall over the lake Victoria Basin (150–300 mm) while the New Tiedke generally underestimated rainfall amount over many areas of Uganda. For deterministic rainfall prediction, the Grell-Fretas is recommended for rainfall prediction over northern Uganda while the Kain-Fritsch scheme is recommended over eastern region.

Keywords: convective parameterization schemes, March-May 2013 rainfall season, spatial variation of parameterization schemes over Uganda, WRF model

Procedia PDF Downloads 210
509 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes

Authors: Bouziane Mohamed Tewfik


In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis

Procedia PDF Downloads 312
508 Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa

Authors: Abiodun M. Adeola, Hannes Rautenbach, Gbenga J. Abiodun, Thabo E. Makgoale, Joel O. Botai, Omolola M. Adisa, Christina M. Botai


There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.

Keywords: correlation, malaria, rainfall, seasonal, trends

Procedia PDF Downloads 49
507 Trends in Extreme Rainfall Events in Tasmania, Australia

Authors: Orpita U. Laz, Ataur Rahman


Climate change will affect various aspects of hydrological cycle such as rainfall. A change in rainfall will affect flood magnitude and frequency in future which will affect the design and operation of hydraulic structures. In this paper, trends in sub-hourly, sub-daily, and daily extreme rainfall events from 18 rainfall stations located in Tasmania, Australia are examined. Two non-parametric tests (Mann-Kendall and Spearman’s Rho) are applied to detect trends at 10%, 5%, and 1% significance levels. Sub-hourly (6, 12, 18, and 30 minutes) annual maximum rainfall events have been found to experience statistically significant upward trends at 10 % level of significance. However, sub-daily durations (1 hour, 3 and 12 hours) exhibit decreasing trends and no trends exists for longer duration rainfall events (e.g. 24 and 72 hours). Some of the durations (e.g. 6 minutes and 6 hours) show similar results (with upward trends) for both the tests. For 12, 18, 60 minutes and 3 hours durations both the tests show similar downward trends. This finding has important implication for Tasmania in the design of urban infrastructure where shorter duration rainfall events are more relevant for smaller urban catchments such as parking lots, roof catchments and smaller sub-divisions.

Keywords: climate change, design rainfall, Mann-Kendall test, trends, Spearman’s Rho, Tasmania

Procedia PDF Downloads 109
506 An Investigation of Rainfall Changes in KanganCity During Years 1964 to 2003

Authors: Borzou Faramarzi, Farideh Azimi, Azam Gohardoust, Abbas Ghasemi Ghasemvand, Maryam Mirzaei, Mandana Amani


In this study, attempts were made to examine and analyze the trend for rainfall changes in Kangan City, Booshehr Province, during the time span 1964 to 2003, using seven rainfall threshold indices based on 50 climate extremes indices approved by WMO–CCL/CLIVAR. These indices include days with heavy precipitations, days with rainfalls, frequency of rainfall threshold values, intensity of rainfall threshold values, percentage of rainfall threshold values, successive days of rainfall, and successive days with no precipitation. Results are indicative of the fact that Kangan City climatic conditions have become more dried than before. Indices days with heavy precipitations and days with rainfalls do not show a certain trend in Kangan City. Frequency, intensity, and percentage of rainfall threshold values in the station under investigation do not indicate a certain trend. In analysis of time series of rainfall extreme indices, generally, it was revealed that Kangan City is influenced by general factors of global warming. Calculation of values for the next 10 years based on ARIMA models demonstrates a continuation of warming trends in Kangan City. On the whole, rainfall conditions in Kangan City have experienced more dry periods compared to the past, the trend which is also observable for next 10 years.

Keywords: climatic indices, climate change, extreme temperature and precipitation, time series

Procedia PDF Downloads 146
505 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown

Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson


This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.

Keywords: capacity randomness, flow breakdown, freeway capacity, rainfall

Procedia PDF Downloads 220
504 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia

Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka


There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.

Keywords: elevation, forest cover, rainfall, slope

Procedia PDF Downloads 322
503 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model

Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura


This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.

Keywords: Malawi rainfall, forecast model, predictors, SST

Procedia PDF Downloads 225
502 Identification of Rainfall Trends in Qatar

Authors: Abdullah Al Mamoon, Ataur Rahman


Due to climate change, future rainfall will change at many locations on earth; however, the spatial and temporal patterns of this change are not easy to predict. One approach of predicting such future changes is to examine the trends in the historical rainfall data at a given region and use the identified trends to make future prediction. For this, a statistical trend test is commonly applied to the historical data. This paper examines the trends of daily extreme rainfall events from 30 rain gauges located in the State of Qatar. Rainfall data covering from 1962 to 2011 were used in the analysis. A combination of four non-parametric and parametric tests was applied to identify trends at 10%, 5%, and 1% significance levels. These tests are Mann-Kendall (MK), Spearman’s Rho (SR), Linear Regression (LR) and CUSUM tests. These tests showed both positive and negative trends throughout the country. Only eight stations showed positive (upward) trend, which were however not statistically significant. In contrast, significant negative (downward) trends were found at the 5% and 10% levels of significance in six stations. The MK, SR and LR tests exhibited very similar results. This finding has important implications in the derivation/upgrade of design rainfall for Qatar, which will affect design and operation of future urban drainage infrastructure in Qatar.

Keywords: trends, extreme rainfall, daily rainfall, Mann-Kendall test, climate change, Qatar

Procedia PDF Downloads 288
501 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks

Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher


Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.

Keywords: neural networks, rainfall, prediction, climatic variables

Procedia PDF Downloads 362
500 A Comparative Study of Localized Rainfall and Air Pollution between the Urban Area of Sungai Penchala with Sub-Urban and Green Area in Malaysia

Authors: Mohd N. Ahmad, Lariyah Mohd Sidek


The study had shown that Sungai Penchala (urban) was experiencing localized rainfall and hazardous air pollution due to urbanization. The high rainfall that partly added by localized rain had been seen as a threat of causing the flash floods and water quality deterioration in the area. The air pollution that consisted of mainly particulate matter (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) gave an alarming air pollution index (API) to the surrounding area. Comparison among urban area (Sungai Penchala), sub-urban (Gombak), and green areas (Jerantut plus Temerloh) with respect to the rainfall parameters and air pollutants, it was found that the degree of intensities of the parameters was positively related with the urbanization. The air pollutants especially NO2, SO2, and CO were in tandem with the increase of the rainfall. Specifically, if the water catchment area is physically near to the urban area, then the authorities need to look into related urban development program by considering the management of emitted pollutants with respect to the ecological setting of the urban area.

Keywords: urbanization, green area localized rainfall, air pollution, sub-urban area

Procedia PDF Downloads 368
499 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria

Authors: J. Julius Adebayo


The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.

Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security

Procedia PDF Downloads 21
498 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin


Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 8
497 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma


Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 64
496 Extreme Rainfall Frequency Analysis For Meteorological Sub-Division 4 Of India Using L-Moments.

Authors: Arti Devi, Parthasarthi Choudhury


Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analysed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.

Keywords: L-moments, ZDIST statistics, serial correlation, Mann Kendall test

Procedia PDF Downloads 325
495 Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique

Authors: Ahmed Najah Ahmed Al-Mahfoodh, Ali Najah Ahmed Al-Mahfoodh, Ahmed Al-Shafie


In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia.

Keywords: genetic programming, prediction, rainfall-runoff, Malaysia

Procedia PDF Downloads 286
494 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia

Authors: Evan Hajani, Ataur Rahman, Khaled Haddad


Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30, and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (sub-daily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.

Keywords: climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall

Procedia PDF Downloads 138
493 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju


The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 68