Search results for: modified Bessel functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4838

Search results for: modified Bessel functions

4028 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Petroula A. Tarantili

Abstract:

In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene

Procedia PDF Downloads 321
4027 Consistent Testing for an Implication of Supermodular Dominance with an Application to Verifying the Effect of Geographic Knowledge Spillover

Authors: Chung Danbi, Linton Oliver, Whang Yoon-Jae

Abstract:

Supermodularity, or complementarity, is a popular concept in economics which can characterize many objective functions such as utility, social welfare, and production functions. Further, supermodular dominance captures a preference for greater interdependence among inputs of those functions, and it can be applied to examine which input set would produce higher expected utility, social welfare, or production. Therefore, we propose and justify a consistent testing for a useful implication of supermodular dominance. We also conduct Monte Carlo simulations to explore the finite sample performance of our test, with critical values obtained from the recentered bootstrap method, with and without the selective recentering, and the subsampling method. Under various parameter settings, we confirmed that our test has reasonably good size and power performance. Finally, we apply our test to compare the geographic and distant knowledge spillover in terms of their effects on social welfare using the National Bureau of Economic Research (NBER) patent data. We expect localized citing to supermodularly dominate distant citing if the geographic knowledge spillover engenders greater social welfare than distant knowledge spillover. Taking subgroups based on firm and patent characteristics, we found that there is industry-wise and patent subclass-wise difference in the pattern of supermodular dominance between localized and distant citing. We also compare the results from analyzing different time periods to see if the development of Internet and communication technology has changed the pattern of the dominance. In addition, to appropriately deal with the sparse nature of the data, we apply high-dimensional methods to efficiently select relevant data.

Keywords: supermodularity, supermodular dominance, stochastic dominance, Monte Carlo simulation, bootstrap, subsampling

Procedia PDF Downloads 129
4026 A Game-Based Methodology to Discriminate Executive Function – a Pilot Study With Institutionalized Elderly People

Authors: Marlene Rosa, Susana Lopes

Abstract:

There are few studies that explore the potential of board games as a performance measure, despite it can be an interesting strategy in the context of frailty populations. In fact, board games are immersive strategies than can inhibit the pressure of being evaluated. This study aimed to test the ability of gamed-base strategies to assess executive function in elderly population. Sixteen old participants were included: 10 with affected executive functions (G1 – 85.30±6.00 yrs old; 10 male); 6 with executive functions with non-clinical important modifications (G2 - 76.30±5.19 yrs old; 6 male). Executive tests were assessed using the Frontal Assessment Battery (FAB), which is a quick-applicable cognitive screening test (score<12 means impairment). The board game used in this study was the TATI Hand Game, specifically for training rhythmic coordination of the upper limbs with multiple cognitive stimuli. This game features 1 table grid, 1 set of Single Game cards (to play with one hand); Double Game cards (to play simultaneously with two hands); 1 dice to plan Single Game mode; cards to plan the Double Game mode; 1 bell; 2 cups. Each participant played 3 single game cards, and the following data were collected: (i) variability in time during board game challenges (SD); (ii) number of errors; (iii) execution speed (sec). G1 demonstrated: high variability in execution time during board game challenges (G1 – 13.0s vs G2- 0.5s); a higher number of errors (1.40 vs 0.67); higher execution velocity (607.80s vs 281.83s). These results demonstrated the potential of implementing board games as a functional assessment strategy in geriatric care. Future studies might include larger samples and statistical methodologies to find cut-off values for impairment in executive functions during performance in TATI game.

Keywords: board game, aging, executive function, evaluation

Procedia PDF Downloads 142
4025 Investigation of Glacier Activity Using Optical and Radar Data in Zardkooh

Authors: Mehrnoosh Ghadimi, Golnoush Ghadimi

Abstract:

Precise monitoring of glacier velocity is critical in determining glacier-related hazards. Zardkooh Mountain was studied in terms of glacial activity rate in Zagros Mountainous region in Iran. In this study, we assessed the ability of optical and radar imagery to derive glacier-surface velocities in mountainous terrain. We processed Landsat 8 for optical data and Sentinel-1a for radar data. We used methods that are commonly used to measure glacier surface movements, such as cross correlation of optical and radar satellite images, SAR tracking techniques, and multiple aperture InSAR (MAI). We also assessed time series glacier surface displacement using our modified method, Enhanced Small Baseline Subset (ESBAS). The ESBAS has been implemented in StaMPS software, with several aspects of the processing chain modified, including filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing atmospheric noise, and removing the ramp caused by ionosphere turbulence and/or orbit errors. Our findings indicate an average surface velocity rate of 32 mm/yr in the Zardkooh mountainous areas.

Keywords: active rock glaciers, landsat 8, sentinel-1a, zagros mountainous region

Procedia PDF Downloads 77
4024 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method

Authors: Anthony P. Anies, Jose C. Muñoz

Abstract:

A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.

Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK

Procedia PDF Downloads 193
4023 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions

Authors: Valerii Dashuk

Abstract:

The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.

Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function

Procedia PDF Downloads 174
4022 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 139
4021 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'

Authors: Anthony Coogan

Abstract:

Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.

Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle

Procedia PDF Downloads 199
4020 Research on Evaluation of Renewable Energy Technology Innovation Strategy Based on PMC Index Model

Authors: Xue Wang, Liwei Fan

Abstract:

Renewable energy technology innovation is an important way to realize the energy transformation. Our government has issued a series of policies to guide and support the development of renewable energy. The implementation of these policies will affect the further development, utilization and technological innovation of renewable energy. In this context, it is of great significance to systematically sort out and evaluate the renewable energy technology innovation policy for improving the existing policy system. Taking the 190 renewable energy technology innovation policies issued during 2005-2021 as a sample, from the perspectives of policy issuing departments and policy keywords, it uses text mining and content analysis methods to analyze the current situation of the policies and conduct a semantic network analysis to identify the core issuing departments and core policy topic words; A PMC (Policy Modeling Consistency) index model is built to quantitatively evaluate the selected policies, analyze the overall pros and cons of the policy through its PMC index, and reflect the PMC value of the model's secondary index The core departments publish policies and the performance of each dimension of the policies related to the core topic headings. The research results show that Renewable energy technology innovation policies focus on synergy between multiple departments, while the distribution of the issuers is uneven in terms of promulgation time; policies related to different topics have their own emphasis in terms of policy types, fields, functions, and support measures, but It still needs to be improved, such as the lack of policy forecasting and supervision functions, the lack of attention to product promotion, and the relatively single support measures. Finally, this research puts forward policy optimization suggestions in terms of promoting joint policy release, strengthening policy coherence and timeliness, enhancing the comprehensiveness of policy functions, and enriching incentive measures for renewable energy technology innovation.

Keywords: renewable energy technology innovation, content analysis, policy evaluation, PMC index model

Procedia PDF Downloads 64
4019 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 269
4018 Reconstruction of Holographic Dark Energy in Chameleon Brans-Dicke Cosmology

Authors: Surajit Chattopadhyay

Abstract:

Accelerated expansion of the current universe is well-established in the literature. Dark energy and modified gravity are two approaches to account for this accelerated expansion. In the present work, we consider scalar field models of dark energy, namely, tachyon and DBI essence in the framework of chameleon Brans-Dicke cosmology. The equation of state parameter is reconstructed and the subsequent cosmological implications are studied. We examined the stability for the obtained solutions of the crossing of the phantom divide under a quantum correction of massless conformally invariant fields and we have seen that quantum correction could be small when the phantom crossing occurs and the obtained solutions of the phantom crossing could be stable under the quantum correction. In the subsequent phase, we have established a correspondence between the NHDE model and the quintessence, the DBI-essence and the tachyon scalar field models in the framework of chameleon Brans–Dicke cosmology. We reconstruct the potentials and the dynamics for these three scalar field models we have considered. The reconstructed potentials are found to increase with the evolution of the universe and in a very late stage they are observed to decay.

Keywords: dark energy, holographic principle, modified gravity, reconstruction

Procedia PDF Downloads 412
4017 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 121
4016 Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

Authors: Meareg Amare, Senait Aklog

Abstract:

Lignin film was deposited at the surface of the glassy carbon electrode potential-statically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at the modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10⁻⁶ to 100 × 10⁻⁶ mol L⁻¹ with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10⁻⁷ mol L⁻¹, respectively, supplemented by recovery results of 93.79–102.17%, validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected, confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

Keywords: electrochemical, lignin, caffeine, electrode

Procedia PDF Downloads 119
4015 Numerical Study of Trailing Edge Serrations on a Wells Turbine

Authors: Abdullah S. AlKhalifa, Mohammad Nasim Uddin, Michael Atkinson

Abstract:

The primary objective of this investigation is to explore the aerodynamic impact of adding trailing edge serrations to a Wells turbine. The baseline turbine consists of eight blades with NACA 0015 airfoils. The blade chord length was 0.125 m, and the span was 0.100 m. Two modified NACA 0015 serrated configurations were studied: 1) full-span and 2) partial span serrations covering the trailing edge from hub to tip. Numerical simulations were carried out by solving the three-dimensional, incompressible steady-state Reynolds Averaged Navier-Stokes (RANS) equations using the k-ω SST turbulence model in ANSYS™ (CFX). The aerodynamic performance of the modified Wells turbine to the baseline was made by comparing non-dimensional parameters of torque coefficient, pressure drop coefficient, and turbine efficiency. A comparison of the surface limiting streamlines was performed to analyze the flow topology of the turbine blades. The trailing edge serrations generated a substantial change in surface pressure and effectively reduced the separated flow region, thus improving efficiency in most cases. As a result, the average efficiency increased across the range of simulated flow coefficients.

Keywords: renewable energy, trailing edge serrations, Wells turbine, partial serration

Procedia PDF Downloads 101
4014 Cartagena Protocol and Beyond: Issues and Challenges in the Nigeria's Response to Biosafety

Authors: Dalhat Binta Dan - Ali

Abstract:

The reality of the new world economic order and the ever increasing importance of biotechnology in the global economy have necessitated the ratification of the Cartagena Protocol on Biosafety and the recent promulgation of Biosafety Act in Nigeria 2015. The legal regimes are anchored on the need to create an enabling environment for the flourishing of bio-trade and also to ensure the safety of the environment and human health. This paper critically examines the legal framework on biosafety by taking a cursory look at its philosophical foundation, key issues and milestones. The paper argues that the extant laws, though a giant leap in the establishment of a legal framework on biosafety, it posits that the legal framework raises debate and controversy on the difficulties of risk assessment on biodiversity and human health, other challenges includes lack of sound institutional capacity and the regimes direction of a hybrid approach between environmental conservation and trade issues. The paper recommend the need for the country to do more in the area of stimulating awareness and establishment of a sound institutional capacity to enable the law ensure adequate level of protection in the field of safe transfer, handling, and use of genetically modified organisms (GMOs) in Nigeria.

Keywords: Cartagena protocol, biosafety, issues, challenges, biotrade, genetically modified organism (GMOs), environment

Procedia PDF Downloads 326
4013 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
4012 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis

Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng

Abstract:

Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.

Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM

Procedia PDF Downloads 361
4011 Enabling Translanguaging in the EFL Classroom, Affordances of Learning and Reflections

Authors: Nada Alghali

Abstract:

Translanguaging pedagogy suggests a new perspective in language education relating to multilingualism; multilingual learners have one linguistic repertoire and not two or more separate language systems (García and Wei, 2014). When learners translanguage, they are able to draw on all their language features in a flexible and integrated way (Otheguy, García, & Reid, 2015). In the Foreign Language Classroom, however, the tendency to use the target language only is still advocated as a pedagogy. This study attempts to enable learners in the English as a foreign language classroom to draw on their full linguistic repertoire through collaborative reading lessons. In observations prior to this study, in a classroom where English only policy prevails, learners still used their first language in group discussions yet were constrained at times by the teacher’s language policies. Through strategically enabling translanguaging in reading lessons (Celic and Seltzer, 2011), this study has revealed that learners showed creative ways of language use for learning and reflected positively on thisexperience. This case study enabled two groups in two different proficiency level classrooms who are learning English as a foreign language in their first year at University in Saudi Arabia. Learners in the two groups wereobserved over six weeks and wereasked to reflect their learning every week. The same learners were also interviewed at the end of translanguaging weeks after completing a modified model of the learning reflection (Ash and Clayton, 2009). This study positions translanguaging as collaborative and agentive within a sociocultural framework of learning, positioning translanguaging as a resource for learning as well as a process of learning. Translanguaging learning episodes are elicited from classroom observations, artefacts, interviews, reflections, and focus groups, where they are analysed qualitatively following the sociocultural discourse analysis (Fairclough &Wodak, 1997; Mercer, 2004). Initial outcomes suggest functions of translanguaging in collaborative reading tasks and recommendations for a collaborative translanguaging pedagogy approach in the EFL classroom.

Keywords: translanguaging, EFL, sociocultural theory, discourse analysis

Procedia PDF Downloads 180
4010 Effectiveness of Computer-Based Cognitive Training in Improving Attention-Deficit/Hyperactivity Disorder Rehabilitation

Authors: Marjan Ghazisaeedi, Azadeh Bashiri

Abstract:

Background: Attention-Deficit/Hyperactivity Disorder(ADHD), is one of the most common psychiatric disorders in early childhood that in addition to its main symptoms provide significant deficits in the areas of educational, social and individual relationship. Considering the importance of rehabilitation in ADHD patients to control these problems, this study investigated the advantages of computer-based cognitive training in these patients. Methods: This review article has been conducted by searching articles since 2005 in scientific databases and e-Journals and by using keywords including computerized cognitive rehabilitation, computer-based training and ADHD. Results: Since drugs have short term effects and also they have many side effects in the rehabilitation of ADHD patients, using supplementary methods such as computer-based cognitive training is one of the best solutions. This approach has quick feedback and also has no side effects. So, it provides promising results in cognitive rehabilitation of ADHD especially on the working memory and attention. Conclusion: Considering different cognitive dysfunctions in ADHD patients, application of the computerized cognitive training has the potential to improve cognitive functions and consequently social, academic and behavioral performances in patients with this disorder.

Keywords: ADHD, computer-based cognitive training, cognitive functions, rehabilitation

Procedia PDF Downloads 277
4009 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries

Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov

Abstract:

This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.

Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid

Procedia PDF Downloads 153
4008 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 337
4007 Numerical Analysis of Bearing Capacity of Caissons Subjected to Inclined Loads

Authors: Hooman Dabirmanesh, Mahmoud Ghazavi, Kazem Barkhordari

Abstract:

A finite element modeling for determination of the bearing capacity of caissons subjected to inclined loads is presented in this paper. The model investigates the uplift capacity of the caisson with varying cross sectional area. To this aim, the behavior of the soil is assumed to be elasto-plastic, and its failure is controlled by Modified Cam-Clay failure criterion. The simulation takes into account the couple analysis. The approach is verified using available data from other research work especially centrifuge data. Parametric studies are subsequently performed to investigate the effect of contributing parameters such as aspect ratio of the caisson, the loading rate, the loading direction angle, and points where the external load is applied. In addition, the influence of the caisson geometry is taken into account. The results show the bearing capacity of the caisson increases with increasing the taper angle. Hence, the pullout capacity will increase using the same material. In addition, the bearing capacity of caissons strongly depends on the suction that is generated at tip and in sealed surface on top of caisson. Other results concerning the influencing factors will be presented.

Keywords: aspect ratio, finite element method, inclined load, modified Cam clay, taper angle, undrained condition

Procedia PDF Downloads 263
4006 Biospiral-Detect to Distinguish PrP Multimers from Monomers

Authors: Gulyas Erzsebet

Abstract:

The multimerisation of proteins is a common feature of many cellular processes; however, it could also impair protein functions and/or be associated with the occurrence of diseases. Thus, development of a research tool monitoring the appearance/presence of multimeric protein forms has great importance for a variety of research fields. Such a tool is potentially applicable in the ante-mortem diagnosis of certain conformational diseases, such as transmissible spongiform encephalopathies (TSE) and Alzheimer’s disease. These conditions are accompanied by the appearance of aggregated protein multimers, present in low concentrations in various tissues. This detection is particularly relevant for TSE where the handling of tissues derived from affected individuals and of meat products of infected animals have become an enormous health concern. Here we demonstrate the potential of such a multimer detection approach in TSE by developing a facile approach. The Biospiral-Detect system resembles a traditional sandwich ELISA, except that the capturing antibody that is attached to a solid surface and the detecting antibody is directed against the same or overlapping epitopes. As a consequence, the capturing antibody shields the epitope on the captured monomer from reacting with the detecting antibody, therefore monomers are not detected. Thus, MDS is capable of detecting only protein multimers with high specificity. We developed an alternative system as well, where RNA aptamers were employed instead of monoclonal antibodies. In order to minimize degradation, the 3' and 5' ends of the aptamer contained deoxyribonucleotides and phosphorothioate linkages. When compared the monoclonal antibodies-based system with the aptamers-based one, the former proved to be superior. Thus all subsequent experiments were conducted by employing the Biospiral -Detect modified sandwich ELISA kit. Our approach showed an order of magnitude higher sensitivity toward mulimers than monomers suggesting that this approach may become a valuable diagnostic tool for conformational diseases that are accompanied by multimerization.

Keywords: diagnosis, ELISA, Prion, TSE

Procedia PDF Downloads 251
4005 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber

Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi

Abstract:

The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.

Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle

Procedia PDF Downloads 492
4004 Adsorptive Desulfurization of Tire Pyrolytic Oil Using Cu(I)–Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demands researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for removal of organosulfur compounds (OSC) present in TPO. The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion-exchange between Na-Y zeolite with a Cu(NO3)2 aqueous solution of 0.5M for 48 hours followed by reduction of Cu2+ to Cu+. Batch studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene (TH), benzothiophene (BTH), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophe (4,6-DMDBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of multiple operating conditions such as adsorbent dosage, reaction time and temperature were studied to optimize the process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order 4,6-DMDBT> DBT> BTH> TH. Interpretation of the results was justified using the molecular orbital theory and calculations. Langmuir and Freundlich isotherms were used to predict adsorption of the reaction mixture. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 234
4003 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel

Authors: Carlos Cuenca, Diego Sarzosa

Abstract:

Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.

Keywords: damage, SMSC, SEB, steel, failure

Procedia PDF Downloads 297
4002 Gum Arabic-Coated Magnetic Nanoparticles for Methylene Blue Removal

Authors: Eman Alzahrani

Abstract:

Magnetic nanoparticles (MNPs) were fabricated using the chemical co-precipitation method followed by coating the surface of magnetic Fe3O4 nanoparticles with gum arabic (GA). The fabricated magnetic nanoparticles were characterised using transmission electron microscopy (TEM) which showed that the Fe3O4 nanoparticles and GA-MNPs nanoparticles had a mean diameter of 33 nm, and 38 nm, respectively. Scanning electron microscopy (SEM) images showed that the MNPs modified with GA had homogeneous structure and agglomerated. The energy dispersive X-ray spectroscopy (EDAX) spectrum showed strong peaks of Fe and O. X-ray diffraction patterns (XRD) indicated that the naked magnetic nanoparticles were pure Fe3O4 with a spinel structure and the covering of GA did not result in a phase change. The covering of GA on the magnetic nanoparticles was also studied by BET analysis, and Fourier transform infrared spectroscopy. Moreover, the present study reports a fast and simple method for removal and recovery of methylene blue dye (MB) from aqueous solutions by using the synthesised magnetic nanoparticles modified with gum arabic as adsorbent. The experimental results show that the adsorption process attains equilibrium within five minutes. The data fit the Langmuir isotherm equation and the maximum adsorption capacities were 8.77 mg mg-1 and 14.3 mg mg-1 for MNPs and GA-MNPs, respectively. The results indicated that the homemade magnetic nanoparticles were quite efficient for removing MB and will be a promising adsorbent for the removal of harmful dyes from waste-water.

Keywords: Fe3O4 magnetic nanoparticles, gum arabic, co-precipitation, adsorption dye, methylene blue, adsorption isotherm

Procedia PDF Downloads 431
4001 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 129
4000 Optimizing Mechanical Behavior of Middle Ear Prosthesis Using Finite Element Method with Material Degradation Functionally Graded Materials in Three Functions

Authors: Khatir Omar, Fekih Sidi Mohamed, Sahli Abderahmene, Benkhettou Abdelkader, Boudjemaa Ismail

Abstract:

Advancements in technology have revolutionized healthcare, with notable impacts on auditory health. This study introduces an approach aimed at optimizing materials for middle ear prostheses to enhance auditory performance. We have developed a finite element (FE) model of the ear incorporating a pure titanium TORP prosthesis, validated against experimental data. Subsequently, we applied the Functionally Graded Materials (FGM) methodology, utilizing linear, exponential, and logarithmic degradation functions to modify prosthesis materials. Biocompatible materials suitable for auditory prostheses, including Stainless Steel, titanium, and Hydroxyapatite, were investigated. The findings indicate that combinations such as Stainless Steel with titanium and Hydroxyapatite offer improved outcomes compared to pure titanium and Hydroxyapatite ceramic in terms of both displacement and stress. Additionally, personalized prostheses tailored to individual patient needs are feasible, underscoring the potential for further advancements in auditory healthcare.

Keywords: middle ear, prosthesis, ossicles, FGM, vibration analysis, finite-element method

Procedia PDF Downloads 84
3999 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 323