Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 61

Search results for: bootstrap

61 An Application of Modified M-out-of-N Bootstrap Method to Heavy-Tailed Distributions

Authors: Hannah F. Opayinka, Adedayo A. Adepoju

Abstract:

This study is an extension of a prior study on the modification of the existing m-out-of-n (moon) bootstrap method for heavy-tailed distributions in which modified m-out-of-n (mmoon) was proposed as an alternative method to the existing moon technique. In this study, both moon and mmoon techniques were applied to two real income datasets which followed Lognormal and Pareto distributions respectively with finite variances. The performances of these two techniques were compared using Standard Error (SE) and Root Mean Square Error (RMSE). The findings showed that mmoon outperformed moon bootstrap in terms of smaller SEs and RMSEs for all the sample sizes considered in the two datasets.

Keywords: Bootstrap, income data, lognormal distribution, Pareto distribution

Procedia PDF Downloads 39
60 Using the Bootstrap for Problems Statistics

Authors: Brahim Boukabcha, Amar Rebbouh

Abstract:

The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.

Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models

Procedia PDF Downloads 240
59 The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data

Authors: Edlira Donefski, Tina Donefski, Lorenc Ekonomi

Abstract:

Edgeworth Approximation, Bootstrap, and Monte Carlo Simulations have considerable impacts on achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that has the components of a cash-flow of one of the most successful businesses in the world, as the financial activity, operational activity, and investment activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case, we have created a vector autoregression model, and after that, we have generated the impulse responses in the terms of asymptotic analysis (Edgeworth Approximation), Monte Carlo Simulations, and residual bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.

Keywords: autoregression, bootstrap, edgeworth expansion, Monte Carlo method

Procedia PDF Downloads 11
58 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

Authors: O. Ikpotokin

Abstract:

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics

Procedia PDF Downloads 198
57 Reminiscence Therapy for Alzheimer’s Disease Restrained on Logistic Regression Based Linear Bootstrap Aggregating

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Xianpei Li, Yanmin Yuan, Tracy Lin Huan

Abstract:

Researchers are doing enchanting research into the inherited features of Alzheimer’s disease and probable consistent therapies. In Alzheimer’s, memories are extinct in reverse order; memories formed lately are more transitory than those from formerly. Reminiscence therapy includes the conversation of past actions, trials and knowledges with another individual or set of people, frequently with the help of perceptible reminders such as photos, household and other acquainted matters from the past, music and collection of tapes. In this manuscript, the competence of reminiscence therapy for Alzheimer’s disease is measured using logistic regression based linear bootstrap aggregating. Logistic regression is used to envisage the experiential features of the patient’s memory through various therapies. Linear bootstrap aggregating shows better stability and accuracy of reminiscence therapy used in statistical classification and regression of memories related to validation therapy, supportive psychotherapy, sensory integration and simulated presence therapy.

Keywords: Alzheimer’s disease, linear bootstrap aggregating, logistic regression, reminiscence therapy

Procedia PDF Downloads 129
56 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method

Authors: S. Phanyaem

Abstract:

This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.

Keywords: effect size, confidence interval, bootstrap method, resampling

Procedia PDF Downloads 489
55 Asymptotic Spectral Theory for Nonlinear Random Fields

Authors: Karima Kimouche

Abstract:

In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given.

Keywords: spatial nonlinear processes, spectral estimators, GMC condition, bootstrap method

Procedia PDF Downloads 320
54 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 17
53 Finite Sample Inferences for Weak Instrument Models

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. Finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: bootstrap, Instrumental Variable, Edgeworth expansions, Saddlepoint expansions

Procedia PDF Downloads 170
52 Confidence Intervals for Quantiles in the Two-Parameter Exponential Distributions with Type II Censored Data

Authors: Ayman Baklizi

Abstract:

Based on type II censored data, we consider interval estimation of the quantiles of the two-parameter exponential distribution and the difference between the quantiles of two independent two-parameter exponential distributions. We derive asymptotic intervals, Bayesian, as well as intervals based on the generalized pivot variable. We also include some bootstrap intervals in our comparisons. The performance of these intervals is investigated in terms of their coverage probabilities and expected lengths.

Keywords: asymptotic intervals, Bayes intervals, bootstrap, generalized pivot variables, two-parameter exponential distribution, quantiles

Procedia PDF Downloads 299
51 Subfamilial Relationships within Solanaceae as Inferred from atpB-rbcL Intergenic Spacer

Authors: Syeda Qamarunnisa, Ishrat Jamil, Abid Azhar, Zabta K. Shinwari, Syed Irtifaq Ali

Abstract:

A phylogenetic analysis of family Solanaceae was conducted using sequence data from the chloroplast intergenic atpB-rbcL spacer. Sequence data was generated from 17 species representing 09 out of 14 genera of Solanaceae from Pakistan. Cladogram was constructed using maximum parsimony method and results indicate that Solanaceae is mainly divided into two subfamilies; Solanoideae and Cestroideae. Four major clades within Solanoideae represent tribes; Physaleae, Capsiceae, Datureae and Solaneae are supported by high bootstrap value and the relationships among them are not corroborating with the previous studies. The findings established that subfamily Cestroideae comprised of three genera; Cestrum, Lycium, and Nicotiana with high bootstrap support. Position of Nicotiana inferred with atpB-rbcL sequence is congruent with traditional classification, which placed the taxa in Cestroideae. In the current study Lycium unexpectedly nested with Nicotiana with 100% bootstrap support and identified as a member of tribe Nicotianeae. Expanded sampling of other genera from Pakistan could be valuable towards improving our understanding of intrafamilial relationships within Solanaceae.

Keywords: systematics, solanaceae, phylogenetics, intergenic spacer, tribes

Procedia PDF Downloads 344
50 Efficiency, Effectiveness, and Technological Change in Armed Forces: Indonesian Case

Authors: Citra Pertiwi, Muhammad Fikruzzaman Rahawarin

Abstract:

Government of Indonesia had committed to increasing its national defense the budget up to 1,5 percent of GDP. However, the budget increase does not necessarily allocate efficiently and effectively. Using Data Envelopment Analysis (DEA), the operational units of Indonesian Armed Forces are considered as a proxy to measure those two aspects. The bootstrap technique is being used as well to reduce uncertainty in the estimation. Additionally, technological change is being measured as a nonstationary component. Nearly half of the units are being estimated as fully efficient, with less than a third is considered as effective. Longer and larger sets of data might increase the robustness of the estimation in the future.

Keywords: bootstrap, effectiveness, efficiency, DEA, military, Malmquist, technological change

Procedia PDF Downloads 185
49 An Aspiring Solution to the Man in the Middle Bootstrap Vulnerability

Authors: Mouad Zouina, Benaceur Outtaj

Abstract:

The proposed work falls within the context of improving data security for m-commerce systems. In this context we have placed under the light some flaws encountered in HTTPS the most used m-commerce protocol, particularly the man in the middle attack, shortly MITM. The man in the middle attack is an active listening attack. The idea of this attack is to target the handshake phase of the HTTPS protocol which is the transition from a non-secure connection to a secure connection in our case HTTP to HTTPS. This paper proposes a solution to fix those flaws based on the upgrade of HSTS standard handshake sequence using the DNSSEC standard.

Keywords: m-commerce, HTTPS, HSTS, DNSSEC, MITM bootstrap vulnerability

Procedia PDF Downloads 273
48 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen

Abstract:

Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors

Procedia PDF Downloads 313
47 Evaluation of Transfer Capability Considering Uncertainties of System Operating Condition and System Cascading Collapse

Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan

Abstract:

Over the past few decades, the power system industry in many developing and developed countries has gone through a restructuring process of the industry where they are moving towards a deregulated power industry. This situation will lead to competition among the generation and distribution companies to achieve a certain objective which is to provide quality and efficient production of electric energy, which will reduce the price of electricity. Therefore it is important to obtain an accurate value of the Available Transfer Capability (ATC) and Transmission Reliability Margin (TRM) in order to ensure the effective power transfer between areas during the occurrence of uncertainties in the system. In this paper, the TRM and ATC is determined by taking into consideration the uncertainties of the system operating condition and system cascading collapse by applying the bootstrap technique. A case study of the IEEE RTS-79 is employed to verify the robustness of the technique proposed in the determination of TRM and ATC.

Keywords: available transfer capability, bootstrap technique, cascading collapse, transmission reliability margin

Procedia PDF Downloads 266
46 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models

Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata

Abstract:

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.

Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test

Procedia PDF Downloads 324
45 Emotion Dysregulation as Mediator between Child Abuse and Opiate Use Motives

Authors: Usha Barahmand, Ali Khazaee, Goudarz Sadeghi Hashjin

Abstract:

Coping motives are considered to be indicators of problematic substance use. The present investigation examined a model with emotional abuse as an antecedent and emotional dysregulation as a mediator leading to substance use. The intent of this study was to examine the associations between various types of childhood maltreatment and motives for substance use. The sample consisted of 72 male opiate users recruited from those enrolled for Methadone Maintenance treatment. Participants responded to measures of childhood maltreatment, emotion dysregulation, and motives for opiate use. All data were analyzed using Pearson's correlation coefficients and bootstrap analysis of mediation. Results supported the hypothesis that the experience of emotional abuse in childhood is associated with problems in regulating emotions which in turn correlates with opiate use as a way to cope with negative affect, to enhance positive effect or to obtain social rewards. Bootstrap analysis confirmed the mediating role of emotion dysregulation. Findings support the potential utility of further research into emotion dysregulation and motives as antecedents of problematic opiate use.

Keywords: childhood abuse, emotion dysregulation, motives, substance use

Procedia PDF Downloads 333
44 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 382
43 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 41
42 Two-Stage Hospital Efficiency Analysis Including Qualitative Evidence: A Greek Case

Authors: Panos Xenos, Milton Nektarios, John Yfantopoulos

Abstract:

Background: Policy makers, professional organizations and payers have introduced a variety of initiatives and reforms for the health systems worldwide, aimed at improving hospital efficiency. Their efforts are concentrated in two main categories: to constrain increasing healthcare costs and to enhance quality of services provided. Research Objectives: This study examines the efficiency of 112 Greek public hospitals for the year 2009, evaluates the importance of bootstrapping techniques and investigates the effect of contextual factors on hospital efficiency. Furthermore, the effect of qualitative evidence, on hospital efficiency is explored using data from 28 large hospitals. Methods: We applied Data Envelopment Analysis, augmented by bootstrapping techniques, to estimate efficiency scores. In order to measure the effect of environmental factors on hospital efficiency we used Tobit regression analysis. The significance of our models is evaluated using statistical tests to compare distributions. Results: The Kolmogorov-Smirnov test between the original and the bootstrap-corrected efficiency indicates that their distributions are significantly different (p-value<0.01). The environmental factors, that seem to influence efficiency, are Occupancy Rating and the ratio between Outpatient Visits and Inpatient Days. Results indicate that the inclusion of the quality variable in DEA modelling generates statistically significant variations in efficiency scores (p-value<0.05). Conclusions: The inclusion of quality variables and the use of bootstrap resampling in efficiency analysis impose a statistically significant effect on the distribution of efficiency scores. As a policy conclusion we highlight the importance of these methods on hospital efficiency analysis and, by implication, on healthcare resource allocation.

Keywords: hospitals, efficiency, quality, data envelopment analysis, Greek public hospital sector

Procedia PDF Downloads 205
41 Consistent Testing for an Implication of Supermodular Dominance with an Application to Verifying the Effect of Geographic Knowledge Spillover

Authors: Chung Danbi, Linton Oliver, Whang Yoon-Jae

Abstract:

Supermodularity, or complementarity, is a popular concept in economics which can characterize many objective functions such as utility, social welfare, and production functions. Further, supermodular dominance captures a preference for greater interdependence among inputs of those functions, and it can be applied to examine which input set would produce higher expected utility, social welfare, or production. Therefore, we propose and justify a consistent testing for a useful implication of supermodular dominance. We also conduct Monte Carlo simulations to explore the finite sample performance of our test, with critical values obtained from the recentered bootstrap method, with and without the selective recentering, and the subsampling method. Under various parameter settings, we confirmed that our test has reasonably good size and power performance. Finally, we apply our test to compare the geographic and distant knowledge spillover in terms of their effects on social welfare using the National Bureau of Economic Research (NBER) patent data. We expect localized citing to supermodularly dominate distant citing if the geographic knowledge spillover engenders greater social welfare than distant knowledge spillover. Taking subgroups based on firm and patent characteristics, we found that there is industry-wise and patent subclass-wise difference in the pattern of supermodular dominance between localized and distant citing. We also compare the results from analyzing different time periods to see if the development of Internet and communication technology has changed the pattern of the dominance. In addition, to appropriately deal with the sparse nature of the data, we apply high-dimensional methods to efficiently select relevant data.

Keywords: supermodularity, supermodular dominance, stochastic dominance, Monte Carlo simulation, bootstrap, subsampling

Procedia PDF Downloads 18
40 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 33
39 Design of Personal Job Recommendation Framework on Smartphone Platform

Authors: Chayaporn Kaensar

Abstract:

Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries have gained attention and implemented for this application. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.

Keywords: recommendation, user profile, data mining, web and mobile technology

Procedia PDF Downloads 237
38 A Kolmogorov-Smirnov Type Goodness-Of-Fit Test of Multinomial Logistic Regression Model in Case-Control Studies

Authors: Chen Li-Ching

Abstract:

The multinomial logistic regression model is used popularly for inferring the relationship of risk factors and disease with multiple categories. This study based on the discrepancy between the nonparametric maximum likelihood estimator and semiparametric maximum likelihood estimator of the cumulative distribution function to propose a Kolmogorov-Smirnov type test statistic to assess adequacy of the multinomial logistic regression model for case-control data. A bootstrap procedure is presented to calculate the critical value of the proposed test statistic. Empirical type I error rates and powers of the test are performed by simulation studies. Some examples will be illustrated the implementation of the test.

Keywords: case-control studies, goodness-of-fit test, Kolmogorov-Smirnov test, multinomial logistic regression

Procedia PDF Downloads 274
37 Shiva's Dance: Crisis, Local Institutions, and Private Firms

Authors: João Pereira Dos Santos

Abstract:

The uneven spatial distribution of start-ups and their respective survival may reflect comparative advantages resulting from the local institutional background. For the first time, we explore this idea using Data Envelopment Analysis (DEA) to assess relative efficiency of Portuguese municipalities in this specific context. We depart from the related literature where expenditure is perceived as a desirable input by choosing a measure of fiscal responsibility and infrastructural variables in the first stage. Comparing results for 2006 and 2010, we find that mean performance decreased substantially with 1) the effects of the Global Financial Crisis; 2) as municipal population increases and 3) as financial independence decreases. A second stage is then computed employing a double-bootstrap procedure to evaluate how the regional context outside the control of local authorities (e.g. demographic characteristics and political preferences) impacts on efficiency.

Keywords: entrepreneurship, political economy, public finance, accountability, crisis, efficiency, Portuguese municipalities

Procedia PDF Downloads 382
36 The Use of Degradation Measures to Design Reliability Test Plans

Authors: Stephen V. Crowder, Jonathan W. Lane

Abstract:

With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component.

Keywords: degradation measure, time to failure distribution, bootstrap, computational science

Procedia PDF Downloads 340
35 Identifying Factors Linking Childhood Neglect to Opiate Use

Authors: Usha Barahmand, Ali Khazaee, Goudarz Sadeghi Hashjin

Abstract:

The purpose of this study is to assess the relative mediating effects of impulsivity and internalizing problems in the relationship between childhood neglect and motives for opiate use. Seventy-two adolescent opiate users were recruited for the study. Participants completed assessments of childhood abuse history, distress, impulsiveness and motives for substance use as well as a socio-demographic information sheet. Findings from bootstrap mediator analyses indicated that distress, but not impulsiveness, mediated the relationship between childhood emotional abuse and expansion and enhancement motives for substance use. The current study provides preliminary evidence that internalizing problems may function as a mechanism linking prior childhood experiences of emotional neglect to subsequent motives for substance use. Clinical implications of these findings suggest that targeting emotion dysregulation problems may be an effective adjunct in the treatment of adolescents with a history of childhood maltreatment that are at risk for substance use.

Keywords: childhood neglect, impulsiveness, internalizing problems, substance use motives

Procedia PDF Downloads 352
34 Refined Procedures for Second Order Asymptotic Theory

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments

Procedia PDF Downloads 184
33 Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries

Authors: Eyup Dogan

Abstract:

This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions.

Keywords: biomass energy, CO2 emissions, EKC model, heterogeneity, cross-sectional dependence

Procedia PDF Downloads 181
32 The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley

Authors: Mario Tauzene Afonso Matangue, Ivan Andres Sanchez Ortiz

Abstract:

The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering.

Keywords: annual infections risk, lettuce, non-parametric bootstrapping, quantitative microbial risk assessment tools

Procedia PDF Downloads 20