Search results for: co-precipitation
15 Chitosan Magnetic Nanoparticles and Its Analytical Applications
Authors: Eman Alzahrani
Abstract:
Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption
Procedia PDF Downloads 41514 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka
Abstract:
Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal
Procedia PDF Downloads 29213 Modification of Li-Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
Authors: Liu Li, Kim Seng Lee, Li Lu
Abstract:
The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. The relatively low rate capability is one of the major problems that limit their practical application. In this work, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by coprecipitation method is further modified by F doping or surface treatment to enhance its cycling stability as well as rate capability.Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capacility
Procedia PDF Downloads 35712 Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red
Authors: Khansaa Al-Essa
Abstract:
Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst.Keywords: photodegradation, dye, nanocomposite, graphitic carbon nitride-CeO₂
Procedia PDF Downloads 1811 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures
Authors: Mohsen Padervand
Abstract:
Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli
Procedia PDF Downloads 33010 Catalytic Decomposition of High Energy Materials Using Nanoparticles of Copper Chromite
Authors: M. Sneha Reddy, M. Arun Kumar, V. Kameswara Rao
Abstract:
Chromites are binary transition metal oxides with a general formula of ACr₂O₄, where A = Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺, and Cu²⁺. Chromites have a normal-type spinel structure with interesting applications in the areas of applied physics, material sciences, and geophysics. They have attracted great consideration because of their unique physicochemical properties and tremendous technological applications in nanodevices, sensor elements, and high-temperature ceramics with useful optical properties. Copper chromite is one of the most efficient spinel oxides, having pronounced commercial application as a catalyst in various chemical reactions like oxidation, hydrogenation, alkylation, dehydrogenation, decomposition of organic compounds, and hydrogen production. Apart from its usage in chemical industries, CuCr₂O₄ finds its major application as a burn rate modifier in solid propellant processing for space launch vehicles globally. Herein we synthesized the nanoparticles of copper chromite using the co-precipitation method. The synthesized nanoparticles were characterized by XRD, TEM, SEM, BET, and TG-DTA. The synthesized nanoparticles of copper chromites were used as a catalyst for the thermal decomposition of various high-energy materials.Keywords: copper chromite, coprecipitation method, high energy materials, catalytic thermal decomposition
Procedia PDF Downloads 759 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum
Authors: Nassira Ouslimani
Abstract:
The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia
Procedia PDF Downloads 908 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides
Authors: María R. Contreras, Diana Endara
Abstract:
Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.Keywords: catalysis, cyanide, LDHs, mining
Procedia PDF Downloads 1447 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions
Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes
Abstract:
Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture
Procedia PDF Downloads 2716 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization
Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki
Abstract:
Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution
Procedia PDF Downloads 4625 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)
Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu
Abstract:
Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal
Procedia PDF Downloads 754 Photocatalytic Degradation of Organic Polluant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics
Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri
Abstract:
Currently, the photo catalytic reactions occurring under solar illumination have attracted worldwide attentions due to a tremendous set of environmental problems. Taking the sunlight into account, it is indispensable to develop highly effective visible-light-driver photo catalysts. Nano structured materials such as MxM’1-xWO6 system are widely studied due to its interesting piezoelectric, dielectric and catalytic properties. These materials can be used in photo catalysis technique for environmental applications, such as waste water treatments. The aim of this study was to investigate the photo catalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photo catalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photo catalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photo catalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.
Procedia PDF Downloads 4493 Zn-, Mg- and Ni-Al-NO₃ Layered Double Hydroxides Intercalated by Nitrate Anions for Treatment of Textile Wastewater
Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohamed Abdennouri, Omar Cherkaoui, Noureddine Barka
Abstract:
Industrial effluents are one of the major causes of environmental pollution, especially effluents discharged from various dyestuff manufactures, plastic, and paper making industries. These effluents can give rise to certain hazards and environmental problems for their highly colored suspended organic solid. Dye effluents are not only aesthetic pollutants, but coloration of water by the dyes may affect photochemical activities in aquatic systems by reducing light penetration. It has been also reported that several commonly used dyes are carcinogenic and mutagenic for aquatic organisms. Therefore, removing dyes from effluents is of significant importance. Many adsorbent materials have been prepared in the removal of dyes from wastewater, including anionic clay or layered double hydroxyde. The zinc/aluminium (Zn-AlNO₃), magnesium/aluminium (Mg-AlNO₃) and nickel/aluminium (Ni-AlNO₃) layered double hydroxides (LDHs) were successfully synthesized via coprecipitation method. Samples were characterized by XRD, FTIR, TGA/DTA, TEM and pHPZC analysis. XRD patterns showed a basal spacing increase in the order of Zn-AlNO₃ (8.85Å)> Mg-AlNO₃ (7.95Å)> Ni-AlNO₃ (7.82Å). FTIR spectrum confirmed the presence of nitrate anions in the LDHs interlayer. The TEM images indicated that the Zn-AlNO3 presents circular to shaped particles with an average particle size of approximately 30 to 40 nm. Small plates assigned to sheets with hexagonal form were observed in the case of Mg-AlNO₃. Ni-AlNO₃ display nanostructured sphere in diameter between 5 and 10 nm. The LDHs were used as adsorbents for the removal of methyl orange (MO), as a model dye and for the treatment of an effluent generated by a textile factory. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. Maximum adsorption was occurred at acidic solution pH. Kinetic data were tested using pseudo-first-order and pseudo-second-order kinetic models. The best fit was obtained with the pseudo-second-order kinetic model. Equilibrium data were correlated to Langmuir and Freundlich isotherm models. The best conditions for color and COD removal from textile effluent sample were obtained at lower values of pH. Total color removal was obtained with Mg-AlNO₃ and Ni-AlNO₃ LDHs. Reduction of COD to limits authorized by Moroccan standards was obtained with 0.5g/l LDHs dose.Keywords: chemical oxygen demand, color removal, layered double hydroxides, textile wastewater treatment
Procedia PDF Downloads 3542 Synergy Surface Modification for High Performance Li-Rich Cathode
Authors: Aipeng Zhu, Yun Zhang
Abstract:
The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃
Procedia PDF Downloads 1281 Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides
Authors: Gheorghiţa Mitran, Adriana Urdă, Mihaela Florea, Octavian Dumitru Pavel, Florentina Neaţu
Abstract:
Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content.Keywords: malic acid, oxidative dehydrogenation, hydrogenation, oxaloacetic acid
Procedia PDF Downloads 179