Search results for: high resolution synthetic imagery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21635

Search results for: high resolution synthetic imagery

14135 Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness.

Keywords: water purification, polyelectrolytes, membrane modification, layer-by-layer coating, ceramic membranes

Procedia PDF Downloads 246
14134 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 98
14133 Importance of Different Spatial Parameters in Water Quality Analysis within Intensive Agricultural Area

Authors: Marina Bubalo, Davor Romić, Stjepan Husnjak, Helena Bakić

Abstract:

Even though European Council Directive 91/676/EEC known as Nitrates Directive was adopted in 1991, the issue of water quality preservation in areas of intensive agricultural production still persist all over Europe. High nitrate nitrogen concentrations in surface and groundwater originating from diffuse sources are one of the most important environmental problems in modern intensive agriculture. The fate of nitrogen in soil, surface and groundwater in agricultural area is mostly affected by anthropogenic activity (i.e. agricultural practice) and hydrological and climatological conditions. The aim of this study was to identify impact of land use, soil type, soil vulnerability to pollutant percolation, and natural aquifer vulnerability to nitrate occurrence in surface and groundwater within an intensive agricultural area. The study was set in Varaždin County (northern Croatia), which is under significant influence of the large rivers Drava and Mura and due to that entire area is dominated by alluvial soil with shallow active profile mainly on gravel base. Negative agricultural impact on water quality in this area is evident therefore the half of selected county is a part of delineated nitrate vulnerable zones (NVZ). Data on water quality were collected from 7 surface and 8 groundwater monitoring stations in the County. Also, recent study of the area implied detailed inventory of agricultural production and fertilizers use with the aim to produce new agricultural land use database as one of dominant parameters. The analysis of this database done using ArcGIS 10.1 showed that 52,7% of total County area is agricultural land and 59,2% of agricultural land is used for intensive agricultural production. On the other hand, 56% of soil within the county is classified as soil vulnerable to pollutant percolation. The situation is similar with natural aquifer vulnerability; northern part of the county ranges from high to very high aquifer vulnerability. Statistical analysis of water quality data is done using SPSS 13.0. Cluster analysis group both surface and groundwater stations in two groups according to nitrate nitrogen concentrations. Mean nitrate nitrogen concentration in surface water – group 1 ranges from 4,2 to 5,5 mg/l and in surface water – group 2 from 24 to 42 mg/l. The results are similar, but evidently higher, in groundwater samples; mean nitrate nitrogen concentration in group 1 ranges from 3,9 to 17 mg/l and in group 2 from 36 to 96 mg/l. ANOVA analysis confirmed statistical significance between stations that are classified in the same group. The previously listed parameters (land use, soil type, etc.) were used in factorial correspondence analysis (FCA) to detect importance of each stated parameter in local water quality. Since stated parameters mostly cannot be altered, there is obvious necessity for more precise and more adapted land management in such conditions.

Keywords: agricultural area, nitrate, factorial correspondence analysis, water quality

Procedia PDF Downloads 259
14132 Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria

Authors: Sunday Paul Bako, Augustine Uwanekwu Ezealor, Yahuza Tanimu

Abstract:

In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites.

Keywords: bioprospecting, phytoremediation, heavy metals, Nigeria

Procedia PDF Downloads 284
14131 Stress, Coping, and Substance Use Among College Students During the COVID-19 Pandemic

Authors: Eli Goldstein, David Moore

Abstract:

The COVID-19 pandemic has brought substantial changes to the lives of college students, impacting them negatively. A consequence of these impacts has led to a significant increase in the negative emotional states of depression, anxiety, and stress, as well as substance use. The present study investigated the relationship between substance use (alcohol, cannabis, nicotine, benzodiazepines, psychedelics, and opioids) among college students from March 2020 to March 2021 and the negative emotional states of depression, anxiety, and stress caused by the COVID-19 pandemic, as well as the relationship between certain personality traits and substance use. Participants (N = 85) answered three questionnaires that measured their expressed symptoms of each negative emotional state, their frequency of substance use, and their levels of five specific personality traits. Investigators predicted that individuals experiencing symptoms of stress and anxiety from the COVID-19 pandemic, as well as individuals showing higher levels of neuroticism and low levels of conscientiousness, would use more depressants (alcohol and benzodiazepines) and opioids to cope with their negative emotional states. Investigators also predicted that individuals who expressed high levels of openness to experience would be more likely to use psychedelics and cannabis to cope with symptoms of depression. Significant correlations showed that individuals primarily used depressants to cope with symptoms of anxiety, as well as cannabis and psychedelics to cope with symptoms of depression. It was also revealed that individuals with higher levels of openness to experience used cannabis and psychedelics, and those with high levels of neuroticism were more likely to use depressants. Two unexpected outcomes appeared for alcohol and depression and depressants and extraversion. Possible explanations for these outcomes are later discussed.

Keywords: substance use, mental health, personality traits, coping strategies

Procedia PDF Downloads 162
14130 Energy Harvesting and Storage System for Marine Applications

Authors: Sayem Zafar, Mahmood Rahi

Abstract:

Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.

Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine

Procedia PDF Downloads 138
14129 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: apparent porosity, beneficiation, low-grade chromite, refractory, spinel compounds, slag resistance

Procedia PDF Downloads 387
14128 Linear Decoding Applied to V5/MT Neuronal Activity on Past Trials Predicts Current Sensory Choices

Authors: Ben Hadj Hassen Sameh, Gaillard Corentin, Andrew Parker, Kristine Krug

Abstract:

Perceptual decisions about sequences of sensory stimuli often show serial dependence. The behavioural choice on one trial is often affected by the choice on previous trials. We investigated whether the neuronal signals in extrastriate visual area V5/MT on preceding trials might influence choice on the current trial and thereby reveal the neuronal mechanisms of sequential choice effects. We analysed data from 30 single neurons recorded from V5/MT in three Rhesus monkeys making sequential choices about the direction of rotation of a three-dimensional cylinder. We focused exclusively on the responses of neurons that showed significant choice-related firing (mean choice probability =0.73) while the monkey viewed perceptually ambiguous stimuli. Application of a wavelet transform to the choice-related firing revealed differences in the frequency band of neuronal activity that depended on whether the previous trial resulted in a correct choice for an unambiguous stimulus that was in the neuron’s preferred direction (low alpha and high beta and gamma) or non-preferred direction (high alpha and low beta and gamma). To probe this in further detail, we applied a regularized linear decoder to predict the choice for an ambiguous trial by referencing the neuronal activity of the preceding unambiguous trial. Neuronal activity on a previous trial provided a significant prediction of the current choice (61% correc, 95%Cl~52%t), even when limiting analysis to preceding trials that were correct and rewarded. These findings provide a potential neuronal signature of sequential choice effects in the primate visual cortex.

Keywords: perception, decision making, attention, decoding, visual system

Procedia PDF Downloads 139
14127 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 194
14126 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 86
14125 The Comparison between Modelled and Measured Nitrogen Dioxide Concentrations in Cold and Warm Seasons in Kaunas

Authors: A. Miškinytė, A. Dėdelė

Abstract:

Road traffic is one of the main sources of air pollution in urban areas associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered as traffic-related air pollutant, which concentrations tend to be higher near highways, along busy roads and in city centres and exceedances are mainly observed in air quality monitoring stations located close to traffic. Atmospheric dispersion models can be used to examine emissions from many various sources and to predict the concentration of pollutants emitted from these sources into the atmosphere. The study aim was to compare modelled concentrations of nitrogen dioxide using ADMS-Urban dispersion model with air quality monitoring network in cold and warm seasons in Kaunas city. Modelled average seasonal concentrations of nitrogen dioxide for 2011 year have been verified with automatic air quality monitoring data from two stations in the city. Traffic station is located near high traffic street in industrial district and background station far away from the main sources of nitrogen dioxide pollution. The modelling results showed that the highest nitrogen dioxide concentration was modelled and measured in station located near intensive traffic street, both in cold and warm seasons. Modelled and measured nitrogen dioxide concentration was respectively 25.7 and 25.2 µg/m3 in cold season and 15.5 and 17.7 µg/m3 in warm season. While the lowest modelled and measured NO2 concentration was determined in background monitoring station, respectively 12.2 and 13.3 µg/m3 in cold season and 6.1 and 7.6 µg/m3 in warm season. The difference between monitoring station located near high traffic street and background monitoring station showed that better agreement between modelled and measured NO2 concentration was observed at traffic monitoring station.

Keywords: air pollution, nitrogen dioxide, modelling, ADMS-Urban model

Procedia PDF Downloads 408
14124 Seismic Performance of Steel Shear Wall Using Experimental and Numerical Analysis

Authors: Wahab Abdul Ghafar, Tao Zhong, Baba Kalan Enamullah

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic Performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high Performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study.

Procedia PDF Downloads 108
14123 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)

Authors: Pechpailin Kortnoi, Tanitnun Paprad

Abstract:

Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.

Keywords: myasthenia gravis, the fatigability test, the ice pack test, the combined bedside test

Procedia PDF Downloads 7
14122 The Quasar 3C 47:Extreme Population B Jetted Source with Double-Peaked Profile

Authors: Shimeles Terefe Mengistue, Paola Marziani, Ascensióndel Olmo, Jaime Perea, Mirjana Pović

Abstract:

The theory that rotating accretion disks are responsible for the broad emission-line profiles in quasars is frequently put forth; however, the presence of accretion disk (AD) in active galactic nuclei (AGN) had limited and indirect observational support. In order to evaluate the extent to which the AD is a source of the broad Balmer lines and high ionization UV lines in radio-loud (RL) AGN, we focused on an extremely jetted RL quasar, 3C 47 that clearly shows a double peaked profile. This work presents its optical spectra and UV observations from the HST/FOS covering the rest-frame spectral range from 2000 to 7000 \AA. The fit of the low ionization lines, Hbeta, Halpha and MgII2800 show profiles that are in very good agreement with a relativistic Keplerian AD model. The profile of the prototypical high ionization lines can also be modeled by the contribution of the AD, with additional components due to outflows and emissions from the innermost part of the narrow line regions (NLRs). A prominent fit of the resulting double peaked profiles were found and very important disk parameters of the disk have been determined using the Hbeta, Halpha and MgII2800 lines: the inner and outer radii (both in units of G/mbh, where mbh is the supermassive black hole), an inclination to the line of sight, the emissivity index and the local broadening parameter. In addition, the accretion parameters, /mbh and /lledd are also determined. This work indicates that the line profile of 3C 47 shows the most convincing direct evidence for the presence of a rotating AD in AGN and the broad, double-peaked profiles originate from this AD that surrounds an /mbh.

Keywords: active galactic nuclei, quasars, emission lines, Double-peaked, supermassive black hole

Procedia PDF Downloads 75
14121 ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application

Authors: Pachari Chuenta, Suwat Nanan

Abstract:

ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation.

Keywords: azo dye, chemical precipitation, photocatalytic, ZnO

Procedia PDF Downloads 144
14120 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 145
14119 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 473
14118 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria

Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi

Abstract:

The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.

Keywords: CRU, climate change, precipitation, SPI, temperature

Procedia PDF Downloads 89
14117 A Study of Teachers’ View on Modern Methods of Teaching Regarding the Quality of Instruction in Shiraz High Schools

Authors: Nasrin Badrkhani

Abstract:

Teaching is an interaction between the teacher, student, and the concept being taught, especially within the classroom setting. As society increasingly values thoughtful and creative individuals, there is a growing need to adopt modern, active teaching methods. These methods should engage students in activities that foster problem-solving, creativity, cooperation, and scientific thinking skills. Modern teaching methods emphasize student involvement, gradual and continuous learning (process-centered approaches), and holistic evaluation of students' abilities and talents. A shift from teacher-centered to student-centered teaching is crucial. Among these modern methods are group work, role-playing, group discussions, and activities that engage students in evaluating societal values. This research employs a survey and a 38-question Likert scale questionnaire to explore teachers' perspectives on the impact of modern teaching methods on the quality of education. The study also examines the relationship between these perspectives and variables such as gender, major, and teaching experience. The statistical population consists of high school teachers in Shiraz, Iran, with sampling done using the Morgan table. Discriminant analysis was used for the initial analysis of the questions, and Cronbach's Alpha test was employed for the final examination. SPSS Software was used for statistical analysis, including T-tests and one-way ANOVA. The results indicate that teachers in this city generally have positive attitudes towards the use of modern teaching methods, except when it comes to engaging in judgments concerning societal values. There is no significant difference in viewpoints based on gender or educational background. The findings are consistent with similar studies conducted both within Iran and internationally.

Keywords: learning, modern methods, student, teacher, teaching

Procedia PDF Downloads 24
14116 Protective Coating Layers via Phosphazene Compounds for Stabilizing Silicon Anode Materials

Authors: Adjmal Ghaur, Christoph Peschel, Iris Dienwiebel, Lukas Haneke, Leilei Du , Laurin Profanter, Tobias Placke, Martin Winter

Abstract:

In recent years, lithium-ion batteries (LIBs)are widely used in electric vehicles (EVs) and mobile energy storage devices (ESDs), which has led to higher requirements for energy density. To fulfill these requirements, tremendous attention has been paid to design advanced LIBs with various siliconactive materials as alternative negative electrodes to replace graphite (372 mAh g⁻¹)due to their high theoretical gravimetric capacity (4200mAh g⁻¹). However, silicon as potential anode material suffers from huge volume changes during charging and discharging and has poor electronicconductivity which negatively impacts the long-term performance and preventshigh silicon contents from practical application. Additionally, an unstable crystalline silicon structure tends to pulverization during the (de)lithiation process. To compensate for the volume changes, alleviate pulverization, and maintain high electronicconductivity, silicon-doped graphite composites with protecting coating layers are a promising approach. In this context, phosphazene compounds are investigated concerning their silicon protecting properties in silicon-doped graphite composites. In detail, electrochemical performance measurements in pouch full-cells(NCM523||SiOx/C), supressing gas formation properties, and post-mortem analyzes were carried out to characterize phosphazene compounds as additive materials. The introduction of the dual-additive approach in state-of-the-art electrolytes leads to synergistic effects between FEC and phosphazene compounds which accelerate the durability of silicon particles and results in enhanced electrochemical performance.

Keywords: silicon, phosphazene, solid electrolyte interphase, electrolyte, gasmeasurements

Procedia PDF Downloads 166
14115 Assessment of Hepatosteatosis Among Diabetic and Nondiabetic Patients Using Biochemical Parameters and Noninvasive Imaging Techniques

Authors: Tugba Sevinc Gamsiz, Emine Koroglu, Ozcan Keskin

Abstract:

Aim: Nonalcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease in the general population. The higher mortality and morbidity among NAFLD patients and lack of symptoms makes early detection and management important. In our study, we aimed to evaluate the relationship between noninvasive imaging and biochemical markers in diabetic and nondiabetic patients diagnosed with NAFLD. Materials and Methods: The study was conducted from (September 2017) to (December 2017) on adults admitted to Internal Medicine and Gastroenterology outpatient clinics with hepatic steatosis reported on ultrasound or transient elastography within the last six months that exclude patients with other liver diseases or alcohol abuse. The data were collected and analyzed retrospectively. Number cruncher statistical system (NCSS) 2007 program was used for statistical analysis. Results: 116 patients were included in this study. Diabetic patients compared to nondiabetics had significantly higher Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM) and fibrosis values. Also, hypertension, hepatomegaly, high BMI, hypertriglyceridemia, hyperglycemia, high A1c, and hyperuricemia were found to be risk factors for NAFLD progression to fibrosis. Advanced fibrosis (F3, F4) was present in 18,6 % of all our patients; 35,8 % of diabetic and 5,7 % of nondiabetic patients diagnosed with hepatic steatosis. Conclusion: Transient elastography is now used in daily clinical practice as an accurate noninvasive tool during follow-up of patients with fatty liver. Early diagnosis of the stage of liver fibrosis improves the monitoring and management of patients, especially in those with metabolic syndrome criteria.

Keywords: diabetes, elastography, fatty liver, fibrosis, metabolic syndrome

Procedia PDF Downloads 152
14114 Assessment of Knowledge, Awareness about Hemorrhoids Causes and Stages among the General Public of Saudi Arabia

Authors: Asaiel Mubark Al Hadi

Abstract:

Background: A frequent anorectal condition known as hemorrhoids, sometimes known as piles, is characterized by a weakening of the anal cushion and the supporting tissue as well as spasms of the internal sphincter. Hemorrhoids are most frequently identified by painless bright red bleeding, prolapse, annoying grape-like tissue prolapse, itching, or a combination of symptoms. digital rectal examination (DRE) and anoscope are used to diagnose it. Constipation, a low-fiber diet, a high body- mass index (BMI), pregnancy, and a reduced physical activity are among the factors that are typically thought to increase the risk of hemorrhoids. Golighers is the most commonly used hemorrhoid classification scheme It is 4 degrees, which determines the degree of the event. The purpose of this study is to assess knowledge and awareness level of the causes and stages of Hemorrhoids in the public of Saudi Arabia. Method: This cross-sectional study was conducted in the Saudi Arabia between Oct 2022- Dec 2022. The study group included at least 384 aged above 18 years. The outcomes of this study were analyzed using the SPSS program using a pre-tested questionnaire. Results: The study included 1410 participants, 69.9% of them were females and 30.1% were males. 53.7% of participants aged 20- 30 years old. 17% of participants had hemorrhoids and 42% had a relative who had hemorrhoids. 42.8% of participants could identify stage 1 of hemorrhoids correctly, 44.7% identified stage 2 correctly, 46.7% identified stage 3 correctly and 58.1% identified stage 4 correctly. Only 28.9% of participants had high level of knowledge about hemorrhoids, 62.7% had moderate knowledge and 8.4% had low knowledge. Conclusion: In conclusion, Saudi general population has poor knowledge of hemorrhoids, their causes and their management approach. There was a significant association between knowledge scores of hemorrhoids with age, gender, residence area and employment.

Keywords: hemorrhoids, external hemorrhoid, internal hemorrhoid, anal fissure, hemorrhoid stages, prolapse, rectal bleeding

Procedia PDF Downloads 98
14113 Determinants of Child Malnutrition in Sub-Saharan Africa

Authors: Habtamu Fufa, Yemane Berhane

Abstract:

Child under nutrition has long-term consequences for intellectual ability, economic productivity, reproductive performance and susceptibility to metabolic and cardiovascular disease. The unacceptably high prevalence of malnutrition in young children of the region has not changed much over the last decades, which could make the achievement of the corresponding Millennium Development Goals very unlikely. Despite the well-documented problems of child malnutrition in Sub-Saharan Africa, there is few systematic review of evidences on determinants of child malnutrition in the region. The current available evidence on determinants of child under nutrition in Sub-Saharan Africa is systematically reviewed. The method used in searching relevant literature was using bio medical databases PUBMED, Google scholar and the website of the World Health Organization on nutrition using the following key words: "Determinants “, "Child Malnutrition", and "Sub- Saharan Africa". The search was limited to articles published in and after 1995 up to date. In all the reviewed articles, the data were analyzed using multivariate regression analysis and or odds ratios for significance of determinants in child malnutrition. Synthesis of 40 published articles from various countries of the region is done and noted that household economic status, maternal education, disease, breastfeeding practices, age and sex of a child, birth interval and residential areas were found to be determinants of child under nutrition. Poverty remains the main factor of malnutrition in Sub-Saharan Africa and poor education of parents aggravates the malnutrition through perpetuation of poor nutrition practices. Male children under five years are the most affected ones. Understanding of these determinants of poor nutritional attainment would provide insights in designing interventions for reducing the high levels of child malnutrition in this region. Large-scale multi-sectoral community-based interventions are urgently needed for a sustainable improvement of child nutritional & health status in Sub-Saharan Africa.

Keywords: child malnutrition, determinants, Sub-Saharan Africa, health status

Procedia PDF Downloads 479
14112 Incidences and Factors Associated with Perioperative Cardiac Arrest in Trauma Patient Receiving Anesthesia

Authors: Visith Siriphuwanun, Yodying Punjasawadwong, Suwinai Saengyo, Kittipan Rerkasem

Abstract:

Objective: To determine incidences and factors associated with perioperative cardiac arrest in trauma patients who received anesthesia for emergency surgery. Design and setting: Retrospective cohort study in trauma patients during anesthesia for emergency surgery at a university hospital in northern Thailand country. Patients and methods: This study was permitted by the medical ethical committee, Faculty of Medicine at Maharaj Nakorn Chiang Mai Hospital, Thailand. We clarified data of 19,683 trauma patients receiving anesthesia within a decade between January 2007 to March 2016. The data analyzed patient characteristics, traumas surgery procedures, anesthesia information such as ASA physical status classification, anesthesia techniques, anesthetic drugs, location of anesthesia performed, and cardiac arrest outcomes. This study excluded the data of trauma patients who had received local anesthesia by surgeons or monitoring anesthesia care (MAC) and the patient which missing more information. The factor associated with perioperative cardiac arrest was identified with univariate analyses. Multiple regressions model for risk ratio (RR) and 95% confidence intervals (CI) were used to conduct factors correlated with perioperative cardiac arrest. The multicollinearity of all variables was examined by bivariate correlation matrix. A stepwise algorithm was chosen at a p-value less than 0.02 was selected to further multivariate analysis. A P-value of less than 0.05 was concluded as statistically significant. Measurements and results: The occurrence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was 170.04 per 10,000 cases. Factors associated with perioperative cardiac arrest in trauma patients were age being more than 65 years (RR=1.41, CI=1.02–1.96, p=0.039), ASA physical status 3 or higher (RR=4.19–21.58, p < 0.001), sites of surgery (intracranial, intrathoracic, upper intra-abdominal, and major vascular, each p < 0.001), cardiopulmonary comorbidities (RR=1.55, CI=1.10–2.17, p < 0.012), hemodynamic instability with shock prior to receiving anesthesia (RR=1.60, CI=1.21–2.11, p < 0.001) , special techniques for surgery such as cardiopulmonary bypass (CPB) and hypotensive techniques (RR=5.55, CI=2.01–15.36, p=0.001; RR=6.24, CI=2.21–17.58, p=0.001, respectively), and patients who had a history of being alcoholic (RR=5.27, CI=4.09–6.79, p < 0.001). Conclusion: Incidence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was very high and correlated with many factors, especially age of patient and cardiopulmonary comorbidities, patient having a history of alcoholic addiction, increasing ASA physical status, preoperative shock, special techniques for surgery, and sites of surgery including brain, thorax, abdomen, and major vascular region. Anesthesiologists and multidisciplinary teams in pre- and perioperative periods should remain alert for warning signs of pre-cardiac arrest and be quick to manage the high-risk group of surgical trauma patients. Furthermore, a healthcare policy should be promoted for protecting against accidents in high-risk groups of the population as well.

Keywords: perioperative cardiac arrest, trauma patients, emergency surgery, anesthesia, factors risk, incidence

Procedia PDF Downloads 169
14111 Next Generation of Tunnel Field Effect Transistor: NCTFET

Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka

Abstract:

Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.

Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance

Procedia PDF Downloads 195
14110 Psychological Alarm among Individuals Suffering from Irritable Bowel Syndrome

Authors: Selim A., Albasher N., Bakrmom G., Alanzi S.

Abstract:

Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by abdominal discomfort or pain and associated with alteration in frequency and/or form of bowel habit among other symptoms. This diagnosis is associated with increased levels of psychological distress, maladaptive coping, genetic risk factors, abnormal small and colonic intestine transit, change in stool frequency or form and abdominal discomfort or pain. Aim: The aim of the study was to assess psychological alarm among individuals suffering from Irritable Bowel Syndrome (IBS). Methods: A cross-sectional correlational research design was used to conduct the current study. A convenience sample of 504 participants was included in the present study. Data were collected using a self-report questionnaire. The questionnaire included socio-demographic data, ROME III to identify Irritable Bowel Syndrome (IBS) and Psychological Alarm Questionnaire. Results: Out of 504 participants who reported abdominal discomfort, 297 (58.9 %) participants met the diagnostic criteria of IBS. The mean age of the IBS participants was 30.16 years, females composed 75.1% of the IBS participants, and 55.2% did not seek medical help. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals when compared to individuals not suffering from IBS. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals compared to individuals not suffering from IBS. Conclusion: IBS is highly associated with significant psychological alarms including depression, anxiety and suicidal ideas.

Keywords: abdominal pain , irritable bowel syndrome, distress, psychological alarms

Procedia PDF Downloads 189
14109 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review

Authors: Siddharatha Sharma

Abstract:

With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.

Keywords: fingerprinting, biometrics, human beings, authentication

Procedia PDF Downloads 325
14108 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 152
14107 Analysing the Mesoscale Variations of 7Be and 210Pb Concentrations in a Complex Orography, Guadalquivir Valley, Southern Spain

Authors: M. A. Hernández-Ceballos, E. G. San Miguel, C. Galán, J. P. Bolívar

Abstract:

The evolution of 7Be and 210Pb activity concentrations in surface air along the Guadalquivir valley (southern Iberian Peninsula) is presented in this study. Samples collected for 48 h, every fifteen days, from September 2012 to November 2013 at two sampling sites (Huelva city in the mouth and Cordoba city in the middle (located 250 km far away)), are used to 1) analysing the spatial variability and 2) understanding the influence of wind conditions on 7Be and 210Pb. Similar average concentrations were registered along the valley. The mean 7Be activity concentration was 4.46 ± 0.21 mBq/m3 at Huelva and 4.33 ± 0.20 mBq/m3 at Cordoba, although registering higher maximum and minimum values at Cordoba (9.44 mBq/m3 and 1.80 mBq/m3) than at Huelva (7.95 mBq/m3 and 1.04 mBq/m3). No significant differences were observed in the 210Pb mean activity concentrations between Cordoba (0.40 ± 0.04 mBq/m3) and Huelva (0.35 ± 0.04 mBq/m3), although the maximum (1.10 mBq/m3 and 0.87 mBq/m3) and minimum (0.02 mBq/m3 and 0.04 mBq/m3) values were recorded in Cordoba. Although similar average concentrations were obtained in both sites, the temporal evolution of both natural radionuclides presents differences between them. The meteorological analysis of two sampling periods, in which large differences on 7Be and 210Pb concentrations are observed, indicates the different impact of surface and upper wind dynamics. The analysis reveals the different impact of the two sea-land breeze patterns usually observed along the valley (pure and non-pure) and the corresponding air masses at higher layers associated with each one. The pure, with short development (around 30 km inland) and increasing accumulation process, favours high concentrations of both radionuclides in Huelva (coastal site), while the non-pure, with winds sweeping the valley until arrive to Cordoba (250 km far away), causes high activity values at this site. These results reveal the impact of mesoscale conditions on these two natural radionuclides, and the importance of these circulations on its spatial and temporal variability.

Keywords: 7Be, 210Pb, air masses, mesoscale process

Procedia PDF Downloads 409
14106 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 270