Search results for: learning physical
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12821

Search results for: learning physical

5531 Examining the Challenges of Teaching Traditional Dance in Contemporary India

Authors: Aadya Kaktikar

Abstract:

The role of a traditional dance teacher in India revolves around teaching movements and postures that have been a part of the movement vocabulary of dancers from before the 2nd century BC. These movements inscribe on the mind and body of the dancer a complex web of philosophy, culture history, and religion. However, this repository of tradition sits in a fast globalizing India creating a cultural space which is in a constant flux, where identities and meanings are being constantly challenged. The guru-shishya parampara, the traditional way of learning dance, sits uneasily with a modern education space in India. The traditional dance teacher is caught in the cross-currents of tradition and modernity, of preservation and exploration. This paper explores conflicting views on what dance ought to mean and how it should be taught. The paper explores the tensions of the social, economic and cultural spaces that the traditional dance teacher navigates.

Keywords: pedagogy, dance education, dance curriculum, teacher training

Procedia PDF Downloads 326
5530 Restructuring of Embedded System Design Course: Making It Industry Compliant

Authors: Geetishree Mishra, S. Akhila

Abstract:

Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.

Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology

Procedia PDF Downloads 668
5529 Mathematical Knowledge a Prerequisite for Science Education Courses in Tertiary Institution

Authors: Esther Yemisi Akinjiola

Abstract:

Mathematics has been regarded as the backbone of science and technological development, without which no nation can achieve any sustainable growth and development. Mathematics is a useful tool to simplify science by quantification of phenomena; hence physics and chemistry cannot be done without Calculus and Statistics. Mathematics is used in physical science to calculate the measurement of objects and their characteristics, as well as to show the relationship between different functions and properties. Mathematics is the building block for everything in our daily lives, including the use of mobile devices, architecture design, ancient arts, engineering sports, and. among others. Therefore the study of Mathematics is made compulsory at primary, basic, and secondary school levels. Thus, this paper discusses the concepts of Mathematics, science, and their relationships. Also, it discusses Mathematics contents needed to study science-oriented courses such as physics education, chemistry education, and biology education in the tertiary institution. The paper concluded that without adequate knowledge of Mathematics, it will be difficult, if not impossible, for science education students to cope in their field of study.

Keywords: mathematical knowledge, prerequisite, science education, tertiary institution

Procedia PDF Downloads 95
5528 Estimating Big Five Personality Expressions with a Tiered Information Framework

Authors: Laura Kahn, Paul Rodrigues, Onur Savas, Shannon Hahn

Abstract:

An empirical understanding of an individual's personality expression can have a profound impact on organizations seeking to strengthen team performance and improve employee retention. A team's personality composition can impact overall performance. Creating a tiered information framework that leverages proxies for a user's social context and lexical and linguistic content provides insight into location-specific personality expression. We leverage the layered framework to examine domain-specific, psychological, and lexical cues within social media posts. We apply DistilBERT natural language transfer learning models with real world data to examine the relationship between Big Five personality expressions of people in Science, Technology, Engineering and Math (STEM) fields.

Keywords: big five, personality expression, social media analysis, workforce development

Procedia PDF Downloads 146
5527 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 98
5526 Role of Education in the Transference of Global Values

Authors: Baratali Monfarediraz

Abstract:

Humans’ identity is not only under the influence of a certain society or social structure but also it is influenced by an international identity. This article is a research on role of education in the manifestation of universally accepted values such as, advancement of science, improvement in the quality of education, preservation of the natural environment, preservation, and spread of peace, exchange of knowledge and technology, equal educational opportunities, benefiting from a universal morality and etc. Therefore, the relation between universal beliefs and values and educational approaches and programs is the first thing to pay attention to. Studies indicate that the first step in achieving the above mentioned goals is offering learning strategies. Therefore the importance of educational approaches and programs as a tool for the transference of ideas, experiences and thoughts becomes quite clear. Proper education gives everyone the opportunity of acquiring knowledge while creating tendency toward social activities paves the way for achieving the universal values.

Keywords: globalization, universal values, education, universal goal, values, society

Procedia PDF Downloads 385
5525 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation

Procedia PDF Downloads 415
5524 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 147
5523 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 501
5522 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program

Authors: Secil Kaya Gulen

Abstract:

Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.

Keywords: distance education, virtual classrooms, higher education, e-learning

Procedia PDF Downloads 269
5521 The Analysis of Cultural Diversity in EFL Textbook for Senior High School in Indonesia

Authors: Soni Ariawan

Abstract:

The study aims to explore the cultural diversity highlighted in EFL textbook for Senior High School grade 10 in Indonesia. The visual images are selected as the data and qualitatively analysed using content analysis. The reason to choose visual images because images are not always neutral and they might impact teaching and learning process. In the current study, cultural diversity aspects are focused on religion (Muslim, Protestant, Catholic, Hindu, Buddhist, Confucian), gender (male, female, unclear), ethnic (Melanesian, Austronesian, Foreigner) and socioeconomic (low, middle, high, undetermined) diversity as the theoretical framework. The four aspects of cultural diversity are sufficiently representative to draw a conclusion in investigating Indonesian culture representation in EFL textbook. The finding shows that cultural diversity is not proportionally reflected in the textbook, particularly in the visual images.

Keywords: EFL textbook, cultural diversity, visual images, Indonesia

Procedia PDF Downloads 318
5520 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 53
5519 Utilization of Hybrid Teaching Methods to Improve Writing Skills of Undergraduate Students

Authors: Tahira Zaman

Abstract:

The paper intends to discover the utility of hybrid teaching methods to aid undergraduate students to improve their English academic writing skills. A total of 45 undergraduate students were selected randomly from three classes from varying language abilities, with the research design of monitoring and rubrics evaluation as a means of measure. Language skills of the students were upgraded with the help of experiential learning methods using reflective writing technique, guided method in which students were merely directed to correct form of writing techniques along with self-guided method for the students to produce a library research-based article measured through a standardized rubrics provided. The progress of the students was monitored and checked through rubrics and self-evaluation and concluded that a change was observed in the students’ writing abilities.

Keywords: self evaluation, hybrid, self evaluation, reflective writing

Procedia PDF Downloads 167
5518 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 186
5517 Hydration Evaluation In A Working Population in Greece

Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova

Abstract:

Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. Water intake from both solid and liquid foods was recorded using a semi-quantified drinking frequency questionnaire the validated Water Balance Questionnaire was used to evaluate hydration status. The calculation of water from solid and liquid foods was based on data from the USDA National Nutrient Database. Water balance was calculated subtracting the total fluid loss from the total fluid intake in the body. Furthermore, the questionnaire including additional questions on drinking habits and work-related factors.volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.

Keywords: hydration, working population, water balance, workplace behavior

Procedia PDF Downloads 30
5516 Intellectual Women: The Continuing Struggle between Marriage and Personal Dreams in Margaret Drabble's a Summer Bird-Cage and The Millstone

Authors: Ashwag Abdul-Hakeem Al-Thubaiti

Abstract:

This study aims at analysing women's hesitant attitudes towards marriage in Margaret Drabble's novels, A Summer-Bird-Cage (1964) and The Millstone (1965), to prove that these ambivalent feelings are due to their search for autonomy. The heroines' radical outlook on independence is only meant to hide their conflict regarding sex-experience and fear of intimacy, a fear that has been enhanced by their rejection of the expression of faith that considers marriage a sacred bond and instead focus on their own identity and dissolve any bond that may affect their independence. To achieve their autonomy, they have to depend on themselves financially and focus on their aspirational goals. This sharp division between the two worlds, the family life and the personal success attributes negatively to their lives and leads to a self-identity crisis. Drabble tends to solve this struggle by awakening their maternal instinct. Once they respect their physical needs and appreciate their role as it is assigned to them by nature and society, they reach a balanced identity.

Keywords: autonomy, marriage, maternity, women

Procedia PDF Downloads 566
5515 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran

Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.

Keywords: ERP, BSC, ERP project evaluation, IT projects

Procedia PDF Downloads 327
5514 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 123
5513 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module

Authors: D. Hassell, D. De Focatiis

Abstract:

This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.

Keywords: engineering education, student differences, student learning, web based coursework

Procedia PDF Downloads 302
5512 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information

Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai

Abstract:

Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.

Keywords: knowledge graph, entity alignment, transformer, deep learning

Procedia PDF Downloads 50
5511 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 41
5510 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 135
5509 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 241
5508 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation

Authors: Stephen Kirkup

Abstract:

This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.

Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education

Procedia PDF Downloads 165
5507 The Challenge of Teaching French as a Foreign Language in a Multilingual Community

Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis

Abstract:

The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.

Keywords: challenges, french as foreign language, multilingual community, teaching

Procedia PDF Downloads 229
5506 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 97
5505 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina

Abstract:

A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.

Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 366
5504 Health Portals for Specific Populations: A Design for Pregnant Women

Authors: Janine Sommer, Mariana Daus, Mariana Simon, Maria Smith, Daniel Luna

Abstract:

The technologies and communication advances contributed to new tools development which allows patients to have an active role in their own health. In the light of information needs and paradigms changes about health, the patient self-manages their care. This line of care focuses on patients; specific portals come up to people with particular requirements like pregnant women. Thinking of a portal design to this sector of the population, in September 2016 a survey was made to users with the objective to knowing and understanding information’s needs at the moment to use an application for pregnant. Also, prototypes of the portal´s features were designed to try and validate with users, using the methodology of human-centered design. Investigations have made possible the identification of needs of this population and develop a tool who try to satisfy, providing timely information for each part of pregnancy and allowing the patients to make a physical check and the follow up of pregnancy seeking advice from our obstetricians.

Keywords: electronic health record, health personal record, mobile applications, pregnant women

Procedia PDF Downloads 355
5503 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT

Procedia PDF Downloads 349
5502 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 13