Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 115

Search results for: gas permeation

115 Microstructure of Hydrogen Permeation Barrier Coatings

Authors: Motonori Tamura


Ceramics coatings consisting of fine crystal grains, with diameters of about 100 nm or less, provided superior hydrogen-permeation barriers. Applying TiN, TiC or Al₂O₃ coatings on a stainless steel substrate reduced the hydrogen permeation by a factor of about 100 to 5,000 compared with uncoated substrates. Effect of the microstructure of coatings on hydrogen-permeation behavior is studied. The test specimens coated with coatings, with columnar crystals grown vertically on the substrate, tended to exhibit higher hydrogen permeability. The grain boundaries of the coatings became trap sites for hydrogen, and microcrystalline structures with many grain boundaries are expected to provide effective hydrogen-barrier performance.

Keywords: hydrogen permeation, tin coating, microstructure, crystal grain, stainless steel

Procedia PDF Downloads 226
114 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery

Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong


Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.

Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention

Procedia PDF Downloads 264
113 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo


Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 27
112 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour


Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: hydrogen separation, perovskite, proton conducting membrane.

Procedia PDF Downloads 242
111 Effect of Hydrogen Content and Structure in Diamond-Like Carbon Coatings on Hydrogen Permeation Properties

Authors: Motonori Tamura


The hydrogen barrier properties of the coatings of diamond-like carbon (DLC) were evaluated. Using plasma chemical vapor deposition and sputtering, DLC coatings were deposited on Type 316L stainless steels. The hydrogen permeation rate was reduced to 1/1000 or lower by the DLC coatings. The DLC coatings with high hydrogen content had high hydrogen barrier function. For hydrogen diffusion in coatings, the movement of atoms through hydrogen trap sites such as pores in coatings, and crystal defects such as dislocations, is important. The DLC coatings are amorphous, and there are both sp3 and sp2 bonds, and excess hydrogen could be found in the interstitial space and the hydrogen trap sites. In the DLC coatings with high hydrogen content, these hydrogen trap sites are likely already filled with hydrogen atoms, and the movement of new hydrogen atoms could be limited.

Keywords: hydrogen permeation, stainless steels, diamond-like carbon, hydrogen trap sites

Procedia PDF Downloads 213
110 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery

Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim


Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).

Keywords: butylglycerols, dextran, nanoparticles, transdermal

Procedia PDF Downloads 38
109 Iontophoretic Drug Transport of Some Anti-Diabetic Agents

Authors: Ashish Jain, Satish Nayak


Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range.

Keywords: transdermal, iontophoresis, pig skin, rabbits, glipizide, glibeclamide

Procedia PDF Downloads 292
108 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor

Authors: Y. Muto, S. Araki, H. Yamamoto


The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.

Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor

Procedia PDF Downloads 428
107 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane

Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina


This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.

Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature

Procedia PDF Downloads 230
106 Penetration Depth Study of Linear Siloxanes through Human Skin

Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska


Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.

Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 300
105 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug

Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia


The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery

Procedia PDF Downloads 284
104 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay


Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 237
103 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models

Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi


The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.

Keywords: mixed matrix membrane, permeation models, porous particles, porosity

Procedia PDF Downloads 277
102 Development of Polybenzoxazine Membranes on Al2O3 Support for Water-Ethanol Separation via Pervaporation Technique

Authors: Chonlada Choedchun, Ni-on Saelim, Panupong Chuntanalerg, Thanyalak Chaisuwan, Sujitra Wongkasemjit


Bioethanol is one of the candidates to replace fossil fuels. Membrane technique is one of the attractive processes to produce high purity of ethanol. In this work, polybenzoxazine (PBZ) membrane successfully synthesized from bisphenol-A (BPA), formaldehyde, and two different types of multifunctionalamines: tetraethylenepentamine (tepa), and diethylenetriamine (deta), was evaluated for water-ethanol separation. The membrane thickness was determined by scanning electron microscopy (SEM). Pervaporation technique was carried out to find separation performance. It was found that the optimum PBZ concentration for the preparation of the membranes is 25%. The dipping cycles of PBZ-tepa and PBZ-deta was found to be 4 and 5, giving the total permeation flux of 28.97 and 14.75 g/m2.h, respectively. The separation factor of both membranes was higher than 10,000.

Keywords: polybenzoxazine, pervaporation, permeation flux, separation factor

Procedia PDF Downloads 304
101 Transdermal Delivery of Sodium Diclofenac from Palm Kernel Oil Esteres Nanoemulsions

Authors: Malahat Rezaee, Mahiran Basri, Abu Bakar Salleh, Raja Noor Zaliha Raja Abdul Rahman


Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that has been progressively considered in pharmaceutical science for transdermal delivery of the drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using the surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils, contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research aimed to study the effect of terpene type and concentration on sodium diclofenac permeation from palm kernel oil esters nanoemulsions and physicochemical properties of the nanoemulsions systems. The effect of various terpenes of geraniol, menthone, menthol, cineol and nerolidol at different concentrations of 0.5, 1.0, 2.0, and 4.0% on permeation of sodium diclofenac were evaluated using Franz diffusion cells and rat skin as permeation membrane. The results of this part demonstrated that all terpenes showed promoting effect on sodium diclofenac penetration. However, menthol and menthone at all concentrations showed significant effects (<0.05) on drug permeation. The most outstanding terpene was menthol with the most significant effect for skin permeability of sodium diclofenac. The effect of terpenes on physicochemical properties of nanoemulsion systems was investigated on the parameters of particle size, zeta potential, pH, viscosity and electrical conductivity. The result showed that all terpenes had the significant effect on particle size and non-significant effects on the zeta potential of the nanoemulsion systems. The effect of terpenes was significant on pH, excluding the menthone at concentrations of 0.5 and 1.0%, and cineol and nerolidol at the concentration of 2.0%. Terpenes also had significant effect on viscosity of nanoemulsions exception of menthone and cineol at the concentration of 0.5%. The result of conductivity measurements showed that all terpenes at all concentration except cineol at the concentration of 0.5% represented significant effect on electrical conductivity.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, terpenes, skin permeation

Procedia PDF Downloads 291
100 Iontophoretic Drug Transport: An Non-Invasive Transdermal Approach

Authors: Ashish Jain, Shivam Tayal


There has been great interest in the field of Iontophoresis since few years due to its great applications in the field of controlled transdermal drug delivery system. It is an technique which is used to enhance the transdermal permeation of ionized high molecular weight molecules across the skin membrane especially Peptides & Proteins by the application of direct current of 1-4 mA for 20-40 minutes whereas chemical must be placed on electrodes with same charge. Iontophoresis enhanced the delivery of drug into the skin via pores like hair follicles, sweat gland ducts etc. rather than through stratum corneum. It has wide applications in the field of experimental, Therapeutic, Diagnostic, Dentistry etc. Medical science is using it to treat Hyperhidrosis (Excessive sweating) in hands and feet and to treat other ailments like hypertension, Migraine etc. Nowadays commercial transdermal iontophoretic patches are available in the market to treat different ailments. Researchers are keen to research in this field due to its vast applications and advantages.

Keywords: iontophoresis, novel drug delivery, transdermal, permeation enhancer

Procedia PDF Downloads 128
99 Effect of Different Model Drugs on the Properties of Model Membranes from Fishes

Authors: M. Kumpugdee-Vollrath, T. G. D. Phu, M. Helmis


A suitable model membrane to study the pharmacological effect of pharmaceutical products is human stratum corneum because this layer of human skin is the outermost layer and it is an important barrier to be passed through. Other model membranes which were also used are for example skins from pig, mouse, reptile or fish. We are interested in fish skins in this project. The advantages of the fish skins are, that they can be obtained from the supermarket or fish shop. However, the fish skins should be freshly prepared and used directly without storage. In order to understand the effect of different model drugs e.g. lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid on the properties of the model membrane from various types of fishes e.g. trout, salmon, cod, plaice permeation tests were performed and differential scanning calorimetry was applied.

Keywords: fish skin, model membrane, permeation, DSC, lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid

Procedia PDF Downloads 363
98 Al-Ti-W Metallic Glass Thin Films Deposited by Magnetron Sputtering Technology to Protect Steel Against Hydrogen Embrittlement

Authors: Issam Lakdhar, Akram Alhussein, Juan Creus


With the huge increase in world energy consumption, researchers are working to find other alternative sources of energy instead of fossil fuel one causing many environmental problems as the production of greenhouse effect gases. Hydrogen is considered a green energy source, which its combustion does not cause environmental pollution. The transport and the storage of the gas molecules or the other products containing this smallest chemical element in metallic structures (pipelines, tanks) are crucial issues. The dissolve and the permeation of hydrogen into the metal lattice lead to the formation of hydride phases and the embrittlement of structures. To protect the metallic structures, a surface treatment could be a good solution. Among the different techniques, magnetron sputtering is used to elaborate micrometric coatings capable of slowing down or stop hydrogen permeation. In the plasma environment, the deposition parameters of new thin-film metallic glasses Al-Ti-W were optimized and controlled in order to obtain, hydrogen barrier. Many characterizations were carried out (SEM, XRD and Nano-indentation…) to control the composition and understand the influence of film microstructure and chemical composition on the hydrogen permeation through the coatings. The coating performance was evaluated under two hydrogen production methods: chemical and electrochemical (cathodic protection) techniques. The hydrogen quantity absorbed was experimentally determined using the Thermal-Desorption Spectroscopy method (TDS)). An ideal ATW thin film was developed and showed excellent behavior against the diffusion of hydrogen.

Keywords: thin films, hydrogen, PVD, plasma technology, electrochemical properties

Procedia PDF Downloads 53
97 Formulation and in vitro Evaluation of Transdermal Delivery of Articaine

Authors: Dinakaran Venkatachalam, Paul Chambers, Kavitha Kongara, Preet Singh


The objective of this study is to formulate different topical preparations containing articaine and to investigate their permeation through goat skin. Initially, articaine and its hydrochloride salt were compared for in vitro permeation using Franz cell model. Goat skin samples were collected after euthanizing male goat kids purchased from the dairy goat farmers. Subcutaneous fat was removed and the skin was mounted on the donor chamber (orifice area 1.00 cm²) and drugs were applied onto the epidermis. Phosphate buffer saline (pH 7.4) was used to maintain sink condition in the receptor chamber (8 ml) of the Franz cell. Samples (0.4 ml) were collected at various intervals over 24 hours after each sampling equal volume of PBS was replaced in the receptor chamber. Articaine in the collected samples were quantified using LC/MS. The results suggested that articaine free base permeates better than its hydrochloride salt through goat skin. This study results support the fact that local anesthetics in its base form are lipophilic and thus penetrates faster through cell membranes than their salts. Later, articaine free base was formulated either using ethanol and octyl salicylate or dimethyl sulfoxide (DMSO) as penetration enhancers and was compared for in vitro permeation. The transdermal flux of articaine in the formulation containing DMSO was approximately 3.8 times higher than that of the formulation containing ethanol and octyl salicylate. Further studies to evaluate the local anesthetic efficacy of the topical formulation containing articaine for dermal anesthesia in animals have been planned.

Keywords: articaine, dermal anesthesia, local anesthetic, transdermal

Procedia PDF Downloads 138
96 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina


A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.

Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness

Procedia PDF Downloads 246
95 Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process

Authors: Siti Nurkhamidah, Yeni Rahmawati, Fadlilatul Taufany, Eamor M. Woo, I Made P. A. Merta, Deffry D. A. Putra, Pitsyah Alifiyanti, Krisna D. Priambodo


Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed.

Keywords: carbon nanotube, cellulose acetate, desalination, membrane, PEG

Procedia PDF Downloads 223
94 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery

Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand


Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.

Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles

Procedia PDF Downloads 326
93 Fabrication and Characterization of Folic Acid-Grafted-Thiomer Enveloped Liposomes for Enhanced Oral Bioavailability of Docetaxel

Authors: Farhan Sohail, Gul Shahnaz Irshad Hussain, Shoaib Sarwar, Ibrahim Javed, Zajif Hussain, Akhtar Nadhman


The present study was aimed to develop a hybrid nanocarrier (NC) system with enhanced membrane permeability, bioavailability and targeted delivery of Docetaxel (DTX) in breast cancer. Hybrid NC’s based on folic acid (FA) grafted thiolated chitosan (TCS) enveloped liposomes were prepared with DTX and evaluated in-vitro and in-vivo for their enhanced permeability and bioavailability. Physicochemical characterization of NC’s including particle size, morphology, zeta potential, FTIR, DSC, PXRD, encapsulation efficiency and drug release from NC’s was determined in vitro. Permeation enhancement and p-gp inhibition were performed through everted sac method on freshly excised rat intestine which indicated that permeation was enhanced 5 times as compared to pure DTX and the hybrid NC’s were strongly able to inhibit the p-gp activity as well. In-vitro cytotoxicity and tumor targeting was done using MDA-MB-231 cell line. The stability study of the formulations performed for 3 months showed the improved stability of FA-TCS enveloped liposomes in terms of its particles size, zeta potential and encapsulation efficiency as compared to TCS NP’s and liposomes. The pharmacokinetic study was performed in vivo using rabbits. The oral bioavailability and AUC0-96 was increased 10.07 folds with hybrid NC’s as compared to positive control. Half-life (t1/2) was increased 4 times (58.76 hrs) as compared to positive control (17.72 hrs). Conclusively, it is suggested that FA-TCS enveloped liposomes have strong potential to enhance permeability and bioavailability of hydrophobic drugs after oral administration and tumor targeting.

Keywords: docetaxel, coated liposome, permeation enhancement, oral bioavailability

Procedia PDF Downloads 313
92 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez


In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 295
91 Artificial Membrane Comparison for Skin Permeation in Skin PAMPA

Authors: Aurea C. L. Lacerda, Paulo R. H. Moreno, Bruna M. P. Vianna, Cristina H. R. Serra, Airton Martin, André R. Baby, Vladi O. Consiglieri, Telma M. Kaneko


The modified Franz cell is the most widely used model for in vitro permeation studies, however it still presents some disadvantages. Thus, some alternative methods have been developed such as Skin PAMPA, which is a bio- artificial membrane that has been applied for skin penetration estimation of xenobiotics based on HT permeability model consisting. Skin PAMPA greatest advantage is to carry out more tests, in a fast and inexpensive way. The membrane system mimics the stratum corneum characteristics, which is the primary skin barrier. The barrier properties are given by corneocytes embedded in a multilamellar lipid matrix. This layer is the main penetration route through the paracellular permeation pathway and it consists of a mixture of cholesterol, ceramides, and fatty acids as the dominant components. However, there is no consensus on the membrane composition. The objective of this work was to compare the performance among different bio-artificial membranes for studying the permeation in skin PAMPA system. Material and methods: In order to mimetize the lipid composition`s present in the human stratum corneum six membranes were developed. The membrane composition was equimolar mixture of cholesterol, ceramides 1-O-C18:1, C22, and C20, plus fatty acids C20 and C24. The membrane integrity assay was based on the transport of Brilliant Cresyl Blue, which has a low permeability; and Lucifer Yellow with very poor permeability and should effectively be completely rejected. The membrane characterization was performed using Confocal Laser Raman Spectroscopy, using stabilized laser at 785 nm with 10 second integration time and 2 accumulations. The membrane behaviour results on the PAMPA system were statistically evaluated and all of the compositions have shown integrity and permeability. The confocal Raman spectra were obtained in the region of 800-1200 cm-1 that is associated with the C-C stretches of the carbon scaffold from the stratum corneum lipids showed similar pattern for all the membranes. The ceramides, long chain fatty acids and cholesterol in equimolar ratio permitted to obtain lipid mixtures with self-organization capability, similar to that occurring into the stratum corneum. Conclusion: The artificial biological membranes studied for Skin PAMPA showed to be similar and with comparable properties to the stratum corneum.

Keywords: bio-artificial membranes, comparison, confocal Raman, skin PAMPA

Procedia PDF Downloads 411
90 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration

Authors: Wei-Song Hung


We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.

Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)

Procedia PDF Downloads 218
89 Formulation and Characterization of Drug Loaded Niosomal Gel for Anti-Inflammatory Activity

Authors: Sunil Kamboj, Vipin Saini, Suman Bala, Gaurav Sharma


The main aim of the present research was to encapsulate mefenamic acid in niosomes and incorporate the prepared niosomes in the carbopol gel base for sustained therapeutic action. Mefenamic acid loaded niosomes were prepared by thin film hydration technique and evaluated for entrapment efficiency, vesicular size and zeta potential. The entrapment efficiency of the prepared niosomes was found to increase with decreasing the HLB values of surfactants and vesicle size was found to increase with increasing the cholesterol concentration. Niosomal vesicles with good entrapment efficiencies were incorporated in carbopol gel base to form the niosomal gel. The prepared niosomal gel was evaluated for pH, viscosity, spreadability, extrudability and skin permeation study across the rat skin.The results of permeation study revealed that the gel formulated with span 60 niosomes sustained the drug release for 12 h. Further the in vivo study showed the good inhibition of inflammation by the gel prepared with span 60 niosomes.

Keywords: mefenamic acid, niosomal gel, nonionic surfactants, sustained release

Procedia PDF Downloads 264
88 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari


Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 163
87 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina


An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms

Procedia PDF Downloads 427
86 Synthesis and Solubilization of Flurbiprofen Derivatives and Investigation of Their Biological Activities

Authors: Muhammad Mustaqeem, Musa Kaleem Baloch, Irfan Ullah, Ammarah Luqman, Afshan Ahmad


Flurbiprofen is one of the most potent nonsteroidal anti-inflammatory drugs. It is widely used for relief of pain in patients suffering from rheumatic diseases, migraine, sore throat and primary dysmenorrhea. However, its aqueous solubility is very low and hinders the skin permeation. Thus, it is imperative to develop such a drug delivery systems which can improve its aqueous solubility and hence improve the skin permeation and therapeutic compliance. Microemulsions have been also proven to increase the cutaneous absorption of lipophilic drugs as compared to conventional vehicles. Micro-emulsion is thermodynamically stable emulsion that has the capacity to ‘hide/solubilize’ water-insoluble molecules within a continuous oil phase. Therefore, flurbiprofen was converted to Easters through chemical reactions with alcohols such as methanol, ethanol, propanol and butanol. The product was further treated with hydrazine to get hydrazide. The solubility of the parent drug Flurbiprofen and the products were solubilized in microemulsions formed using various surfactants like ionic, non-ionic and zwitterions. It has been concluded that the product was more soluble than the parent compound. The biological activities of these were also investigated. The outcome was very promising and the product was more active than the parent compound. It, therefore, concluded that in this way, we can not only enhance the solubility of the drug and increase its bioactivity, but also reduce the risk of stomach cancer.

Keywords: Flurbiprofen, microemulsion, surfactants, hyrazides

Procedia PDF Downloads 141