Search results for: safe limits concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7491

Search results for: safe limits concentration

1221 Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmound, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 83
1220 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)

Authors: Abdullah Ay, Şehnaz Şener

Abstract:

It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.

Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli

Procedia PDF Downloads 21
1219 Acupoint Injection of High Concentration of Glucose Attenuates Mice Chronic Pain and Depression Comorbidity

Authors: Chanya Inprasit, Yi-Wen Lin

Abstract:

Inflammation causes changes of peripheral and central nervous system properties, affecting both neuronal and non-neuronal cells, resulting in inflammatory pain. Acupoint injection (AI) was developed in the 1950s and has been widely used for relieving pain. It is an acupoint-stimulating technique that utilizes anatomically based meridians derived from Chinese medicine theory. AI has been accepted as an effective treatment and is thought to display superior results when compared to traditional acupuncture methods. However, the mechanism of AI needs to be ratified by more scientific evidence in order to support the theory and its therapeutic development. In this study, we explored the effect of AI on the comorbidity of chronic pain and depression. Mice hindpaw was injected by complete Freund’s adjuvant (CFA) to induce the condition of chronic pain. Measurements of mechanical and thermal hyperalgesia and depression-like behavior were analyzed. The results indicated a positive tendency to AI treatment. The comorbidity of chronic pain and depression was investigated with relation to transient receptor potential V1 (TRPV1) mechanism through the use of TRPV1 gene deletion. The expression of nociceptors such as voltage-gated sodium channels (Navs) or TRPV1, was significantly down-regulated by AI. The expression of inflammation-activated molecules: astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, and related kinases, were reversed by AI in both the peripheral and central nervous system. Taken together, these data provided a detailed molecular mechanism of AI-induced analgesia and anti-inflammatory properties. This finding may be utilized for clinical practice to treat chronic pain and depression comorbidity.

Keywords: inflammatory pain, acupoint injection, TRPV1, GFAP, S100B

Procedia PDF Downloads 149
1218 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers

Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe

Abstract:

The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).

Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide

Procedia PDF Downloads 193
1217 Sustainability in Space: Material Efficiency in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.

Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 111
1216 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 135
1215 Nigeria’s Terrorists RehabIlitation And Reintegration Policy: A Victimological Perspective

Authors: Ujene Ikem Godspower

Abstract:

Acts of terror perpetrated either by state or non-state actors are considered a social ill and impugn on the collective well-being of the society. As such, there is the need for social reparations, which is meant to ensure the healing of the social wounds resulting from the atrocities committed by errant individuals under different guises. In order to ensure social closure and effectively repair the damages done by anomic behaviors, society must ensure that justice is served and those whose rights and privileges have been denied and battered are given the necessary succour they deserve. With regards to the ongoing terrorism in the Northeast, the moves to rehabilitate and reintegrate Boko Haram members have commenced with the establishment of Operation Safe Corridor,1 and a proposed bill for the establishment of “National Agency for the Education, Rehabilitation, De-radicalisation and Integration of Repentant Insurgents in Nigeria”2. All of which Nigerians have expressed mixed feelings about. Some argue that the endeavor is lacking in ethical decency and justice and totally insults human reasoning. Terrorism and counterterrorism in Nigeria have been enmeshed in gross human rights violations both by the military and the terrorists, and this raises the concern of Nigeria’s ability to fairly and justiciably implement the deradicalization and reintegration efforts. On the other hand, there is the challenge of the community dwellers that are victims of terrorism and counterterrorism and their ability to forgive and welcome back their immediate-past tormentors even with the slightest sense of injustice in the process of terrorists reintegration and rehabilitation. With such efforts implemented in other climes, the Nigeria’s case poses a unique challenge and commands keen interests by stakeholders and the international community due to the aforementioned reasons. It is therefore pertinent to assess the communities’ level of involvement in the cycle of reintegration- hence, the objective of this paper. Methodologically as a part of my larger PhD thesis, this study intends to explore the three different local governments (Michika in Adamawa, Chibok in Borno, and Yunusari in Yobe), all based on the intensity of terrorists attacks. Twenty five in-depth interview will be conducted in the study locations above featuring religious leaders, Community (traditional) leaders, Internally displaced persons, CSOs management officials, and ex-Boko Haram insurgents who have been reintegrated. The data that will be generated from field work will be analyzed using the Nvivo-12 software package, which will help to code and create themes based on the study objectives. Furthermore, the data will be content-analyzed, employing verbatim quotations where necessary. Ethically, the study will take into consideration the basic ethical principles for research of this nature. It will strictly adhere to the principle of voluntary participation, anonymity, and confidentiality.

Keywords: boko haram, reintegration, rehabilitation, terrorism, victimology

Procedia PDF Downloads 245
1214 Antifungal Susceptibility of Saprolegnia parasitica Isolated from Rainbow Trout and Its Host Pathogen Interaction in Zebrafish Disease Model

Authors: Sangyeop Shin, D. C. M. Kulatunga, S. H. S. Dananjaya, Chamilani Nikapitiya, Jehee Lee, Mahanama De Zoysa

Abstract:

Saprolegniasis is one of the most devastating fungal diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated fungi belong to the member of S. parasitica, supported by its typical fungal features including cotton-like whitish mycelium, zoospores (primary and secondary) and phylogenetic analysis with internal transcribed spacer (ITS) region. Pathogenicity of isolated S. parasitica was developed in embryo, larvae, juvenile and adult zebrafish as a disease model. Up regulation of host genes encoding ZfTnf-α, Zfc-Rel, ZfIl-12, ZfLyz-c, Zfβ-def, and ZfHsp-70 was identified in zebrafish larvae after experimental challenge of S. parasitica showing the host immune responses against the S. parasitica. Survival of the juveniles upon fungal infection might be due to the increased immune protection in the host. Investigation of antifungal susceptibility of S. parasitica with natural lawsone (2-hydroxy-1,4-naphthoquinone) revealed the minimum inhibitory concentration (MIC) and percentage inhibition of radial growth (PIRG %) as 200 µg/mL and 31.8%, respectively. Lawsone was able to change the membrane permeability, and cause irreversible damage and disintegration to the cellular membranes of S. parasitica which might have effect on fungi growth inhibition. Moreover, the mycelium exposed to lawsone (MIC level) changed the transcriptional responses of S. parasitica genes. Overall results indicate that lawsone could be a potential and novel anti-S. parasitica agent for controlling S. parasitica infection.

Keywords: host-pathogen interactions, lawsone, rainbow trout, Saprolegnia parasitica, Saprolegniasis, zebrafish

Procedia PDF Downloads 248
1213 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing

Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare

Abstract:

Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.

Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell

Procedia PDF Downloads 73
1212 Laser Writing on Vitroceramic Disks for Petabyte Data Storage

Authors: C. Busuioc, S. I. Jinga, E. Pavel

Abstract:

The continuous need of more non-volatile memories with a higher storage capacity, smaller dimensions and weight, as well as lower costs, has led to the exploration of optical lithography on active media, as well as patterned magnetic composites. In this context, optical lithography is a technique that can provide a significant decrease of the information bit size to the nanometric scale. However, there are some restrictions that arise from the need of breaking the optical diffraction limit. Major achievements have been obtained by employing a vitoceramic material as active medium and a laser beam operated at low power for the direct writing procedure. Thus, optical discs with ultra-high density were fabricated by a conventional melt-quenching method starting from analytical purity reagents. They were subsequently used for 3D recording based on their photosensitive features. Naturally, the next step consists in the elucidation of the composition and structure of the active centers, in correlation with the use of silver and rare-earth compounds for the synthesis of the optical supports. This has been accomplished by modern characterization methods, namely transmission electron microscopy coupled with selected area electron diffraction, scanning transmission electron microscopy and electron energy loss spectroscopy. The influence of laser diode parameters, silver concentration and fluorescent compounds formation on the writing process and final material properties was investigated. The results indicate performances in terms of capacity with two order of magnitude higher than other reported information storage systems. Moreover, the fluorescent photosensitive vitroceramics may be integrated in other applications which appeal to nanofabrication as the driving force in electronics and photonics fields.

Keywords: data storage, fluorescent compounds, laser writing, vitroceramics

Procedia PDF Downloads 224
1211 Antimicrobial Activity of Eucalyptus globulus Essential Oil: Disc Diffusion versus Vapour Diffusion Methods

Authors: Boukhatem Mohamed Nadjib, Ferhat Mohamed Amine

Abstract:

Essential Oils (EO) produced by medicinal plants have been traditionally used for respiratory tract infections and are used nowadays as ethical medicines for colds. The aim of this study was to test the efficacy of the Algerian EGEO against some respiratory tract pathogens by disc diffusion and vapour diffusion methods at different concentrations. The chemical composition of the EGEO was analysed by Gas Chromatography-Mass Spectrometry. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%) and β-myrcene (1.5%) being the main components. By disc diffusion method, EGEO showed potent antimicrobial activity against Gram-positive more than Gram-negative bacteria. The Diameter of Inhibition Zone (DIZ) varied from 69 mm to 75 mm for Staphylococcus aureus and Bacillus subtilis (Gram +) and from 13 to 42 mm for Enterobacter sp and Escherichia coli (Gram-), respectively. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial activity was observed in the vapour phase at lower concentrations. A. baumanii and Klebsiella pneumoniae were the most susceptible strains to the oil vapour with DIZ varied from 38 to 42 mm. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. Else, the DIZ increased with increase in the concentration of the oil. There is growing evidence that EGEO in the vapour phase are effective antibacterial systems and appears worthy to be considered for practical uses in the treatment or prevention of patients with respiratory tract infections or as air decontaminants in the hospital. The present study indicates that EGEO has considerable antimicrobial activity, deserving further investigation for clinical applications.

Keywords: eucalyptus globulus, essential oils, respiratory tract pathogens, antimicrobial activity, vapour phase

Procedia PDF Downloads 367
1210 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors

Authors: Navid Kaboudi, Ali Shayanfar

Abstract:

Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.

Keywords: logistic regression, breastfeeding, descriptors, penetration

Procedia PDF Downloads 69
1209 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa

Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly

Abstract:

It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.

Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal

Procedia PDF Downloads 275
1208 Exploring the Types of Infants and Toddlers' Reading Responses in Nursery Centers: A Qualitative Study

Authors: Ming Fang Hsieh

Abstract:

The purpose of this study was to investigate the reading responses of infants and toddlers across different contexts in nursery centers. The study adopted Sipe’s framework for children’s literacy education to explore the reading behavior of infants and toddlers. The study was conducted at two nurseries. The sample comprised 46 infants and toddlers and 6 caregivers. The methods of data collection included observation of various reading activities, including shared reading in a group, one-on-one reading, and unstructured reading activities, as well as interviews with caregivers. The data obtained through observations and interviews were transcribed and analyzed. The caregivers and the children’s parents signed an informed consent form before the start of the study. There was no risk anticipated during the course of the study. The analysis revealed five types of reading responses exhibited by the infants and toddlers: (1) linguistic- verbally responding to reading, repeating vocabulary, and answering questions; (2) affective- concentrating on reading or requesting for repeated reading, leaning on books, and gazing at caregivers; (3) explosive- children under 18 months were observed manipulating books through their bodies or different movements like flipping, rotating, or tapping on books; (4) social- during unstructured reading context, children were seen interacting with peers or following the rules of reading, sitting properly, and choosing one book at a time; and (5) distracted responses- paying attention to something else instead of reading, walking around, and playing, which was usually observed during shared reading in a group. The study concluded that children’s distraction and explosive reading behaviors may be a part of the process of their emergent reading behavior. As children develop, they demonstrate an increase in verbal responses, improved concentration, and better behavior. The study suggests that adults should continue to provide appropriate reading opportunities beginning from infancy to nurture children’s reading behaviors.

Keywords: reading response, infants and toddlers, early reading, picture books

Procedia PDF Downloads 106
1207 Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella

Authors: Elsa Makue Nguuffo, Esther Del Florence Moni Ndedi, Jacky Njiki Bikoï, Jean Paul Assam Assam, Maximilienne Ascension Nyegue

Abstract:

Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis.

Keywords: shigella, multidrug-resistant, EOs, kinetic

Procedia PDF Downloads 98
1206 Analytical Method for Seismic Analysis of Shaft-Tunnel Junction under Longitudinal Excitations

Authors: Jinghua Zhang

Abstract:

Shaft-tunnel junction is a typical case of the structural nonuniformity in underground structures. The shaft and the tunnel possess greatly different structural features. Even under uniform excitations, they tend to behave discrepantly. Studies on shaft-tunnel junctions are mainly performed numerically. Shaking table tests are also conducted. Although many numerical and experimental data are obtained, an analytical solution still has great merits of gaining more insights into the shaft-tunnel problem. This paper will try to remedy the situation. Since the seismic responses of shaft-tunnel junctions are very related to directions of the excitations, they are studied in two scenarios: the longitudinal-excitation scenario and the transverse-excitation scenario. The former scenario will be addressed in this paper. Given that responses of the tunnel are highly dependent on the shaft, the analytical solutions would be developed firstly for the vertical shaft. Then, the seismic responses of the tunnel would be discussed. Since vertical shafts bear a resemblance to rigid caissons, the solution proposed in this paper is derived by introducing terms of shaft-tunnel and soil-tunnel interactions into equations originally developed for rigid caissons. The validity of the solution is examined by a validation model computed by finite element method. The mutual influence between the shaft and the tunnel is introduced. The soil-structure interactions are discussed parametrically based on the proposed equations. The shaft-tunnel relative displacement and the soil-tunnel relative stiffness are found to be the most important parameters affecting the magnitudes and distributions of the internal forces of the tunnel. A hinge-joint at the shaft-tunnel junction could significantly reduce the degree of stress concentration compared with a rigid joint.

Keywords: analytical solution, longitudinal excitation, numerical validation , shaft-tunnel junction

Procedia PDF Downloads 158
1205 Cytotoxic, Antimicrobial and Antiviral Activities of Acovenoside A: A Cardenolide Isolated from an Egyptian Cultivar of Acokanthera spectabilis Leaves

Authors: Howaida I. Abd-Alla, Amal Z. Hassan, Maha Soltan, Atef G. Hanna, Mounir M. El-Safty

Abstract:

Acokanthera oblongifolia (Apocynaceae) is used for treatment of several infection diseases and is a well-known cardiac glycoside-containing plant. The infusion of their leaves is gargled to treat tonsillitis and is used medicinally to treat snakebites. The total cardiac glycosides content in the leaves was determined by referring to gitoxigenin as a reference compound. Two triterpenes, lup-20(29)-en-3β-ol (1) and oleanolic acid (2); two cardenolides, acovenoside A (3) and acobioside A (4) were isolated from the ethyl acetate extract. Their structures were determined on the basis of spectral analysis. Major constituents isolated from this species were evaluated for cytotoxicity against normal lung cell line (Wi38) and antimicrobial activities against Gram-positive (two strains) and Gram-negative bacteria (four strains), yeast-like fungi (two strains) and fungi (five strains). The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. Their viral inhibitory effects against avian influenza virus type A (AI-H5N1) and Newcastle disease virus (NDV) in specific pathogen free (SPF) embryonated chicken eggs (ECE), chicken embryo fibroblasts (CEF) and Vero cells were evaluated. The cardenolide (3) showed viral inhibitory effects against AI-H5N1 and NDV in SPF ECE. The two cardenolides isolated have shown potent cytotoxicity against Vero cells. Compound (3) showed potent anti-Gram-negative bacteria activity. These results suggested that acovenoside A might be promising for future antiviral and antimicrobial drug design.

Keywords: Acokanthera, AI-H5N1, Cardenolides, NDV, SPF-ECE, VERO, Wi38 , Microbe

Procedia PDF Downloads 177
1204 Morphometric Parameters and Evaluation of Persian Fallow Deer Semen in Dashenaz Refuge in Iran

Authors: Behrang Ekrami, Amin Tamadon

Abstract:

Persian fallow deer (Dama dama mesopotamica) is belonging to the family Cervidae and is only found in a few protected areas in the northwest, north, and southwest of Iran. The aims of this study were analysis of inbreeding and morphometric parameters of semen in male Persian fallow deer to investigate the cause of reduced fertility of this endangered species in Dasht-e-Naz National Refuge, Sari, Iran. The Persian fallow deer semen was collected from four adult bucks randomly during the breeding and non-breeding season from five dehorned and horned deer's BY an artificial vagina. Twelve blood samples was taken from Persian fallow deer and mitochondrial DNA was extracted, amplified, extracted, sequenced, and then were considered for genetic analysis. The Persian fallow deer semen, both with normal and abnormal spermatozoa, is similar to that of domestic ruminants but very smaller and difficult to observe at the primary observation. The post-mating season collected ejaculates contained abnormal spermatozoa, debris and secretion of accessory glands in horned bucks and accessory glands secretion free of any spermatozoa in dehorned or early velvet budding bucks. Microscopic evaluation in all four bucks during the mating season showed the mean concentration of 9×106 spermatozoa/ml. The mean ±SD of age, testes length and testes width was 4.60±1.52 years, 3.58±0.32 and 1.86±0.09 cm, respectively. The results identified 1120 loci (assuming each nucleotide as locus) in which 377 were polymorphic. In conclusion, reduced fertility of male Persian fallow deer may be caused by inbreeding of the protected herd in a limited area of Dasht-e-Naz National Refuge.

Keywords: Persian fallow deer, spermatozoa, reproductive characteristics, morphometric parameters

Procedia PDF Downloads 575
1203 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: healthcare, settlement strategy, urban health, rural

Procedia PDF Downloads 367
1202 Protective Effect of Diosgenin against Silica-Induced Tuberculosis in Rat Model

Authors: Williams A. Adu, Cynthia A. Danquah, Paul P. S. Ossei, Selase Ativui, Michael Ofori, James Asenso, George Owusu

Abstract:

Background Silicosis is an occupational disease of the lung that is caused by chronic exposure to silica dust. There is a higher frequency of co-existence of silicosis with tuberculosis (TB), ultimately resulting in lung fibrosis and respiratory failure. Chronic intake of synthetic drugs has resulted in undesirable side effects. Diosgenin is a steroidal saponin that has been shown to exert a therapeutic effect on lung injury. Therefore, we investigated the ability of diosgenin to reduce the susceptibility of silica-induced TB in rats. Method Silicosis was induced by intratracheal instillation of 50 mg/kg crystalline silica in Sprague Dawley rats. Different doses of diosgenin (1, 10, and 100 mg/kg), Mycobacterium smegmatis and saline were administered for 30 days. Afterwards, 5 of the rats from each group were sacrificed, and the 5 remaining rats in each group, except the control, received Mycobacterium smegmatis. Treatment of diosgenin continued until the 50th day, and the rats were sacrificed at the end of the experiment. The result was analysed using a one-way analysis of variance (ANOVA) with a Graph-pad prism Result At a half-maximal inhibition concentration of 48.27 µM, diosgenin inhibited the growth of Mycobacterium smegmatis. There was a marked decline in the levels of immune cell infiltration and cytokines production. Lactate dehydrogenase and total protein levels were significantly reduced compared to control. There was an increase in the survival rate of the treatment group compared to the control. Conclusion Diosgenin ameliorated silica-induced pulmonary tuberculosis by declining the levels of inflammatory and pro-inflammatory cytokines and, in effect, significantly reduced the susceptibility of rats to pulmonary TB.

Keywords: silicosis, tuberculosis, diosgenin, fibrosis, crystalline silica

Procedia PDF Downloads 64
1201 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 131
1200 Detection and Expression of Peroxidase Genes in Trichoderma harzianum KY488466 and Its Response to Crude Oil Degradation

Authors: Michael Dare Asemoloye, Segun Gbolagade Jonathan, Rafiq Ahmad, Odunayo Joseph Olawuyi, D. O. Adejoye

Abstract:

Fungi have potentials for degrading hydrocarbons through the secretion of different enzymes. Crude oil tolerance and degradation by Trichoderma harzianum was investigated in this study with its ability to produce peroxidase enzymes (LiP and MnP). Many fungal strains were isolated from rhizosphere of grasses growing on a crude oil spilled site, and the most frequent strain based on percentage incidence was further characterized using morphological and molecular characteristics. Molecular characterization was done through the amplification of Ribosomal-RNA regions of 18s (1609-1627) and 28s (287-266) using ITS1 and ITS4 combinations and it was identified using NCBI BLAST tool. The selected fungus was also subjected to an in-vitro tolerance test at crude oil concentrations of 5, 10, 15, 20 and 25% while 0% served as control. In addition, lignin peroxidase genes (lig1-6) and manganese peroxidase gene (mnp) were detected and expressed in this strain using RT-PCR technique, its peroxidase producing activities was also studied in aliquots (U/ml). This strain had highest incidence of 80%, it was registered in NCBI as Trichoderma harzianum asemoJ KY488466. The strain KY488466 responded to crude oil concentrations as it increase, the dose inhibition response percentage (DIRP) increased from 41.67 to 95.41 at 5 to 25 % crude oil concentrations. All the peroxidase genes are present in KY488466, and expressed with amplified 900-1000 bp through RT-PCR technique. In this strain, lig2, lig4 and mnp genes were over-expressed, lig 6 was moderately expressed, while none of the genes was under-expressed. The strain also produced 90±0.87 U/ml lignin peroxidase and 120±1.23 U/mil manganese peroxidase enzymes in aliquots. These results imply that KY488466 can tolerate and survive high crude oil concentration and could be exploited for bioremediation of oil-spilled soils, the produced peroxidase enzymes could also be exploited for other biotechnological experiments.

Keywords: crude oil, enzymes, expression, peroxidase genes, tolerance, Trichoderma harzianum

Procedia PDF Downloads 227
1199 Functions and Challenges of New County-Based Regional Plan in Taiwan

Authors: Yu-Hsin Tsai

Abstract:

A new, mandated county regional plan system has been initiated since 2010 nationwide in Taiwan, with its role situated in-between the policy-led cross-county regional plan and the blueprint-led city plan. This new regional plan contain both urban and rural areas in one single plan, which provides a more complete planning territory, i.e., city region within the county’s jurisdiction, and to be executed and managed effectively by the county government. However, the full picture of its functions and characteristics seems still not totally clear, compared with other levels of plans; either are planning goals and issues that can be most appropriately dealt with at this spatial scale. In addition, the extent to which the inclusion of sustainability ideal and measures to cope with climate change are unclear. Based on the above issues, this study aims to clarify the roles of county regional plan, to analyze the extent to which the measures cope with sustainability, climate change, and forecasted declining population, and the success factors and issues faced in the planning process. The methodology applied includes literature review, plan quality evaluation, and interview with officials of the central and local governments and urban planners involved for all the 23 counties in Taiwan. The preliminary research results show, first, growth management related policies have been widely implemented and expected to have effective impact, including incorporating resources capacity to determine maximum population for the city region as a whole, developing overall vision of urban growth boundary for all the whole city region, prioritizing infill development, and use of architectural land within urbanized area over rural area to cope with urban growth. Secondly, planning-oriented zoning is adopted in urban areas, while demand-oriented planning permission is applied in the rural areas with designated plans. Then, public participation has been evolved to the next level to oversee all of government’s planning and review processes due to the decreasing trust in the government, and development of public forum on the internet etc. Next, fertile agricultural land is preserved to maintain food self-supplied goal for national security concern. More adoption-based methods than mitigation-based methods have been applied to cope with global climate change. Finally, better land use and transportation planning in terms of avoiding developing rail transit stations and corridor in rural area is promoted. Even though many promising, prompt measures have been adopted, however, challenges exist to surround: first, overall urban density, likely affecting success of UGB, or use of rural agricultural land, has not been incorporated, possibly due to implementation difficulties. Second, land-use related measures to mitigating climate change seem less clear and hence less employed. Smart decline has not drawn enough attention to cope with predicted population decrease in the next decade. Then, some reluctance from county’s government to implement county regional plan can be observed vaguely possibly since limits have be set on further development on agricultural land and sensitive areas. Finally, resolving issue on existing illegal factories on agricultural land remains the most challenging dilemma.

Keywords: city region plan, sustainability, global climate change, growth management

Procedia PDF Downloads 349
1198 A Case Study on the Development and Application of Media Literacy Education Program Based on Circular Learning

Authors: Kim Hyekyoung, Au Yunkyung

Abstract:

As media plays an increasingly important role in our lives, the age at which media usage begins is getting younger worldwide. Particularly, young children are exposed to media at an early age, making early childhood media literacy education an essential task. However, most existing early childhood media literacy education programs focus solely on teaching children how to use media, and practical implementation and application are challenging. Therefore, this study aims to develop a play-based early childhood media literacy education program utilizing topic-based media content and explore the potential application and impact of this program on young children's media literacy learning. Based on theoretical and literature review on media literacy education, analysis of existing educational programs, and a survey on the current status and teacher perceptions of media literacy education for preschool children, this study developed a media literacy education program for preschool children, considering the components of media literacy (understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication). To verify the effectiveness of the program, 20 preschool children aged 5 from C City M Kindergarten were chosen as participants, and the program was implemented from March 28th to July 4th, 2022, once a week for a total of 7 sessions. The program was developed based on Gallenstain's (2003) iterative learning model (participation-exploration-explanation-extension-evaluation). To explore the quantitative changes before and after the program, a repeated measures analysis of variance was conducted, and qualitative analysis was employed to examine the observed process changes. It was found that after the application of the education program, media literacy levels such as understanding media characteristics, self-regulation, self-expression, critical understanding, ethical norms, and social communication significantly improved. The recursive learning-based early childhood media literacy education program developed in this study can be effectively applied to young children's media literacy education and help enhance their media literacy levels. In terms of observed process changes, it was confirmed that children learned about various topics, expressed their thoughts, and improved their ability to communicate with others using media content. These findings emphasize the importance of developing and implementing media literacy education programs and can contribute to empowering young children to safely and effectively utilize media in their media environment. The results of this study, exploring the potential application and impact of the recursive learning-based early childhood media literacy education program on young children's media literacy learning, demonstrated positive changes in young children's media literacy levels. These results go beyond teaching children how to use media and can help foster their ability to safely and effectively utilize media in their media environment. Additionally, to enhance young children's media literacy levels and create a safe media environment, diverse content and methodologies are needed, and the continuous development and evaluation of education programs should be conducted.

Keywords: young children, media literacy, recursive learning, education program

Procedia PDF Downloads 72
1197 The Effect of Acute Aerobic Exercise after Consumption of Four Different Diets on Serum Levels Irisin, Insulin and Glucose in Overweight Men

Authors: Majid Mardaniyan Ghahfarokhi, Abdolhamid Habibi, Majid Mohammad Shahi

Abstract:

The combination of exercise and diet as the most important strategy to reduce weight and control obesity-related factors, including Irisin, Insulin, and Glucose was raised. The aim of this study was to investigate the effect of aerobic exercise combined with four different diets on serum levels of Irisin, Insulin, and Glucose in overweight men. Methods: In this quasi-experimental study, 8 overweight men (BMI 29.23±0.47) with average age of (23±1.6) voluntarily participated in 4 sessions by one-week interval. The study was done in exercise physiology lab. In each session, subjects performed a 30 minutes treadmill test with 60-70% of maximum heart rate, after consuming a high carbohydrate, high-fat, high-protein and normal diet. For biochemical measurement, three blood samples were taken in fasting state, two hours after meals and after exercise Results: Statistical analysis of data showed that the serum levels of Irisin after consumption all four diets had been reduced which this reduce as a result of high-fat diet that were significantly (p ≤ 0/038). Serum concentration of Insulin and Glucose increased after consuming four diets. However, increase in serum Insulin and Glucose was significant only after consuming high-carbohydrate diet (Respectively p ≤ 0/001, p ≤ 0/042). In addition, during exercise after consuming all four regular diet, high carbohydrate, high-protein and high-fat, Irisin significant increased significantly (Respectively p ≤ 0/021, p ≤ 0/049, p ≤ 0/001, P ≤ 0/003), Insulin decreased significantly (Respectively p ≤ 0/002, p ≤ 0/001, p ≤ 0/001, p ≤ 0/002) and Glucose were significantly reduced (Respectively p ≤ 0/001, p ≤ 0/001, P ≤ 0/001, p ≤ 0/002). After aerobic activity following the consumption of a high protein diet the highest increase in irisin levels, and after aerobic exercise following consumption of high carbohydrate diet the greatest decrease in insulin and glucose levels were observed. Conclusion: It seems that diet alone and exercises following different consumption diets can have a significant effect on Irisin, Insulin, and Glucose serum levels in overweight young men.

Keywords: acute aerobic exercise, diet, irisin, overweight

Procedia PDF Downloads 257
1196 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction

Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi

Abstract:

High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.

Keywords: DOMS, sTnI, rapid detection test, ELISA

Procedia PDF Downloads 511
1195 Examining Microbial Decomposition, Carbon Cycling and Storage in Cefni Coastal Salt Marsh, Anglesey Island, Wales, United Kingdom

Authors: Dasat G. S., Christopher F. Tim, J. Dun C.

Abstract:

Salt marshes are known to sequester carbon dioxide from the atmosphere into the soil, but natural and anthropogenic activities could trigger the release of large quantities of centuries of buried carbon dioxide, methane and nitrous oxide (CO2, CH4 and N2O) which are the major greenhouse gases (GHGs) implicated with climate change. Therefore, this study investigated the biogeochemical activities by collecting soil samples from low, mid and high zones of the Cefni salt marsh, within the Maltreat estuary, on the island of Anglesey, north Wales, United Kingdom for a consortium of laboratory based experiments using standard operating protocols (POS) to quantify the soil organic matter contents and the rate of microbial decomposition and carbon storage at the Carbon Capture Laboratory of Bangor University Wales. Results of investigations reveals that the mid zone had 56.23% and 9.98% of soil water and soil organic matter (SOM) contents respectively higher than the low and high zones. Phenol oxidase activity (1193.53µmol dicq g-1 h-1) was highest at the low zone in comparison to the high and mid zones (867.60 and 608.74 µmol dicq g-1 h-1) respectively. Soil phenolic concentration was found to be highest in the mid zone (53.25 µg-1 g-1) when compared with those from the high (15.66 µg-1 g-1) and low (4.18 µg-1 g-1) zones respectively. Activities of hydrolase enzymes showed similar trend for the high and low zones and much lower activities in the mid zone. CO2 flux from the mid zone (6.79 ug g-1 h-1) was significantly greater than those from high (-2.29 ug g-1 h-1) and low (1.30 µg g-1 h-1) zones. Since salt marshes provide essential ecosystem services, their degradation or alteration in whatever form could compromise such ecosystem services and could convert them from net sinks into net sources with consequential effects to the global environment.

Keywords: saltmarsh, decomposition, carbon cycling, enzymes

Procedia PDF Downloads 81
1194 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 133
1193 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 337
1192 Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction

Authors: Hyun Lim, Dong Sook Min, Han Eul Yun, Kil Tae Kim, Ya Nan Sun, Young Ho Kim, Hyun Pyo Kim

Abstract:

Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation.

Keywords: acanthoic acid, Acanthopanax koreanum, cartilage, impressic acid, matrix metalloproteinase

Procedia PDF Downloads 358