Search results for: Integrated Counselling and Testing Centre (ICTC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6715

Search results for: Integrated Counselling and Testing Centre (ICTC)

745 Determinants of Budget Performance in an Oil-Based Economy

Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi

Abstract:

Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.

Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue

Procedia PDF Downloads 150
744 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection

Authors: Pukhrambam Helena Chanu, Janardan Yadav

Abstract:

This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.

Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.

Procedia PDF Downloads 30
743 Epigenetic and Archeology: A Quest to Re-Read Humanity

Authors: Salma A. Mahmoud

Abstract:

Epigenetic, or alteration in gene expression influenced by extragenetic factors, has emerged as one of the most promising areas that will address some of the gaps in our current knowledge in understanding patterns of human variation. In the last decade, the research investigating epigenetic mechanisms in many fields has flourished and witnessed significant progress. It paved the way for a new era of integrated research especially between anthropology/archeology and life sciences. Skeletal remains are considered the most significant source of information for studying human variations across history, and by utilizing these valuable remains, we can interpret the past events, cultures and populations. In addition to archeological, historical and anthropological importance, studying bones has great implications in other fields such as medicine and science. Bones also can hold within them the secrets of the future as they can act as predictive tools for health, society characteristics and dietary requirements. Bones in their basic forms are composed of cells (osteocytes) that are affected by both genetic and environmental factors, which can only explain a small part of their variability. The primary objective of this project is to examine the epigenetic landscape/signature within bones of archeological remains as a novel marker that could reveal new ways to conceptualize chronological events, gender differences, social status and ecological variations. We attempted here to address discrepancies in common variants such as methylome as well as novel epigenetic regulators such as chromatin remodelers, which to our best knowledge have not yet been investigated by anthropologists/ paleoepigenetists using plethora of techniques (biological, computational, and statistical). Moreover, extracting epigenetic information from bones will highlight the importance of osseous material as a vector to study human beings in several contexts (social, cultural and environmental), and strengthen their essential role as model systems that can be used to investigate and construct various cultural, political and economic events. We also address all steps required to plan and conduct an epigenetic analysis from bone materials (modern and ancient) as well as discussing the key challenges facing researchers aiming to investigate this field. In conclusion, this project will serve as a primer for bioarcheologists/anthropologists and human biologists interested in incorporating epigenetic data into their research programs. Understanding the roles of epigenetic mechanisms in bone structure and function will be very helpful for a better comprehension of their biology and highlighting their essentiality as interdisciplinary vectors and a key material in archeological research.

Keywords: epigenetics, archeology, bones, chromatin, methylome

Procedia PDF Downloads 92
742 The Relationship between the Competence Perception of Student and Graduate Nurses and Their Autonomy and Critical Thinking Disposition

Authors: Zülfiye Bıkmaz, Aytolan Yıldırım

Abstract:

This study was planned as a descriptive regressive study in order to determine the relationship between the competency levels of working nurses, the levels of competency expected by nursing students, the critical thinking disposition of nurses, their perceived autonomy levels, and certain socio demographic characteristics. It is also a methodological study with regard to the intercultural adaptation of the Nursing Competence Scale (NCS) in both working and student samples. The sample of the study group of nurses at a university hospital for at least 6 months working properly and consists of 443 people filled out questionnaires. The student group, consisting of 543 individuals from the 4 public university nursing 3rd and 4th grade students. Data collection tools consisted of a questionnaire prepared in order to define the socio demographic, economic, and personal characteristics of the participants, the ‘Nursing Competency Scale’, the ‘Autonomy Subscale of the Sociotropy – Autonomy Scale’, and the ‘California Critical Thinking Disposition Inventory’. In data evaluation, descriptive statistics, nonparametric tests, Rasch analysis and correlation and regression tests were used. The language validity of the ‘NCS’ was performed by translation and back translation, and the context validity of the scale was performed with expert views. The scale, which was formed into its final structure, was applied in a pilot application from a group consisting of graduate and student nurses. The time constancy of the test was obtained by analysis testing retesting method. In order to reduce the time problems with the two half reliability method was used. The Cronbach Alfa coefficient of the scale was found to be 0.980 for the nurse group and 0.986 for the student group. Statistically meaningful relationships between competence and critical thinking and variables such as age, gender, marital status, family structure, having had critical thinking training, education level, class of the students, service worked in, employment style and position, and employment duration were found. Statistically meaningful relationships between autonomy and certain variables of the student group such as year, employment status, decision making style regarding self, total duration of employment, employment style, and education status were found. As a result, it was determined that the NCS which was adapted interculturally was a valid and reliable measurement tool and was found to be associated with autonomy and critical thinking.

Keywords: nurse, nursing student, competence, autonomy, critical thinking, Rasch analysis

Procedia PDF Downloads 372
741 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers

Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri

Abstract:

Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.

Keywords: blood cell count, mandatory testing, occupational exposure, radiation

Procedia PDF Downloads 444
740 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 17
739 Trends in All-Cause Mortality and Inpatient and Outpatient Visits for Ambulatory Care Sensitive Conditions during the First Year of the COVID-19 Pandemic: A Population-Based Study

Authors: Tetyana Kendzerska, David T. Zhu, Michael Pugliese, Douglas Manuel, Mohsen Sadatsafavi, Marcus Povitz, Therese A. Stukel, Teresa To, Shawn D. Aaron, Sunita Mulpuru, Melanie Chin, Claire E. Kendall, Kednapa Thavorn, Rebecca Robillard, Andrea S. Gershon

Abstract:

The impact of the COVID-19 pandemic on the management of ambulatory care sensitive conditions (ACSCs) remains unknown. To compare observed and expected (projected based on previous years) trends in all-cause mortality and healthcare use for ACSCs in the first year of the pandemic (March 2020 - March 2021). A population-based study using provincial health administrative data.General adult population (Ontario, Canada). Monthly all-cause mortality, and hospitalizations, emergency department (ED) and outpatient visit rates (per 100,000 people at-risk) for seven combined ACSCs (asthma, COPD, angina, congestive heart failure, hypertension, diabetes, and epilepsy) during the first year were compared with similar periods in previous years (2016-2019) by fitting monthly time series auto-regressive integrated moving-average models. Compared to previous years, all-cause mortality rates increased at the beginning of the pandemic (observed rate in March-May 2020 of 79.98 vs. projected of 71.24 [66.35-76.50]) and then returned to expected in June 2020—except among immigrants and people with mental health conditions where they remained elevated. Hospitalization and ED visit rates for ACSCs remained lower than projected throughout the first year: observed hospitalization rate of 37.29 vs. projected of 52.07 (47.84-56.68); observed ED visit rate of 92.55 vs. projected of 134.72 (124.89-145.33). ACSC outpatient visit rates decreased initially (observed rate of 4,299.57 vs. projected of 5,060.23 [4,712.64-5,433.46]) and then returned to expected in June 2020. Reductions in outpatient visits for ACSCs at the beginning of the pandemic combined with reduced hospital admissions may have been associated with temporally increased mortality—disproportionately experienced by immigrants and those with mental health conditions. The Ottawa Hospital Academic Medical Organization

Keywords: COVID-19, chronic disease, all-cause mortality, hospitalizations, emergency department visits, outpatient visits, modelling, population-based study, asthma, COPD, angina, heart failure, hypertension, diabetes, epilepsy

Procedia PDF Downloads 77
738 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 215
737 Testing the Impact of the Nature of Services Offered on Travel Sites and Links on Traffic Generated: A Longitudinal Survey

Authors: Rania S. Hussein

Abstract:

Background: This study aims to determine the evolution of service provision by Egyptian travel sites and how these services change in terms of their level of sophistication over the period of the study which is ten years. To the author’s best knowledge, this is the first longitudinal study that focuses on an extended time frame of ten years. Additionally, the study attempts to determine the popularity of these websites through the number of links to these sites. Links maybe viewed as the equivalent of a referral or word of mouth but in an online context. Both popularity and the nature of the services provided by these websites are used to determine the traffic on these sites. In examining the nature of services provided, the website itself is viewed as an overall service offering that is composed of different travel products and services. Method: This study uses content analysis in the form of a small scale survey done on 30 Egyptian travel agents’ websites to examine whether Egyptian travel websites are static or dynamic in terms of the services that they provide and whether they provide simple or sophisticated travel services. To determine the level of sophistication of these travel sites, the nature and composition of products and services offered by these sites were first examined. A framework adapted from Kotler (1997) 'Five levels of a product' was used. The target group for this study consists of companies that do inbound tourism. Four rounds of data collection were conducted over a period of 10 years. Two rounds of data collection were made in 2004 and two rounds were made in 2014. Data from the travel agents’ sites were collected over a two weeks period in each of the four rounds. Besides collecting data on features of websites, data was also collected on the popularity of these websites through a software program called Alexa that showed the traffic rank and number of links of each site. Regression analysis was used to test the effect of links and services on websites as independent variables on traffic as the dependent variable of this study. Findings: Results indicate that as companies moved from having simple websites with basic travel information to being more interactive, the number of visitors illustrated by traffic and the popularity of those sites increase as shown by the number of links. Results also show that travel companies use the web much more for promotion rather than for distribution since most travel agents are using it basically for information provision. The results of this content analysis study taps on an unexplored area and provide useful insights for marketers on how they can generate more traffic to their websites by focusing on developing a distinctive content on these sites and also by focusing on the visibility of their sites thus enhancing the popularity or links to their sites.

Keywords: levels of a product, popularity, travel, website evolution

Procedia PDF Downloads 302
736 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 107
735 Using Chatbots to Create Situational Content for Coursework

Authors: B. Bricklin Zeff

Abstract:

This research explores the development and application of a specialized chatbot tailored for a nursing English course, with a primary objective of augmenting student engagement through situational content and responsiveness to key expressions and vocabulary. Introducing the chatbot, elucidating its purpose, and outlining its functionality are crucial initial steps in the research study, as they provide a comprehensive foundation for understanding the design and objectives of the specialized chatbot developed for the nursing English course. These elements establish the context for subsequent evaluations and analyses, enabling a nuanced exploration of the chatbot's impact on student engagement and language learning within the nursing education domain. The subsequent exploration of the intricate language model development process underscores the fusion of scientific methodologies and artistic considerations in this application of artificial intelligence (AI). Tailored for educators and curriculum developers in nursing, practical principles extending beyond AI and education are considered. Some insights into leveraging technology for enhanced language learning in specialized fields are addressed, with potential applications of similar chatbots in other professional English courses. The overarching vision is to illuminate how AI can transform language learning, rendering it more interactive and contextually relevant. The presented chatbot is a tangible example, equipping educators with a practical tool to enhance their teaching practices. Methodologies employed in this research encompass surveys and discussions to gather feedback on the chatbot's usability, effectiveness, and potential improvements. The chatbot system was integrated into a nursing English course, facilitating the collection of valuable feedback from participants. Significant findings from the study underscore the chatbot's effectiveness in encouraging more verbal practice of target expressions and vocabulary necessary for performance in role-play assessment strategies. This outcome emphasizes the practical implications of integrating AI into language education in specialized fields. This research holds significance for educators and curriculum developers in the nursing field, offering insights into integrating technology for enhanced English language learning. The study's major findings contribute valuable perspectives on the practical impact of the chatbot on student interaction and verbal practice. Ultimately, the research sheds light on the transformative potential of AI in making language learning more interactive and contextually relevant, particularly within specialized domains like nursing.

Keywords: chatbot, nursing, pragmatics, role-play, AI

Procedia PDF Downloads 41
734 AI-Enabled Smart Contracts for Reliable Traceability in the Industry 4.0

Authors: Harris Niavis, Dimitra Politaki

Abstract:

The manufacturing industry was collecting vast amounts of data for monitoring product quality thanks to the advances in the ICT sector and dedicated IoT infrastructure is deployed to track and trace the production line. However, industries have not yet managed to unleash the full potential of these data due to defective data collection methods and untrusted data storage and sharing. Blockchain is gaining increasing ground as a key technology enabler for Industry 4.0 and the smart manufacturing domain, as it enables the secure storage and exchange of data between stakeholders. On the other hand, AI techniques are more and more used to detect anomalies in batch and time-series data that enable the identification of unusual behaviors. The proposed scheme is based on smart contracts to enable automation and transparency in the data exchange, coupled with anomaly detection algorithms to enable reliable data ingestion in the system. Before sensor measurements are fed to the blockchain component and the smart contracts, the anomaly detection mechanism uniquely combines artificial intelligence models to effectively detect unusual values such as outliers and extreme deviations in data coming from them. Specifically, Autoregressive integrated moving average, Long short-term memory (LSTM) and Dense-based autoencoders, as well as Generative adversarial networks (GAN) models, are used to detect both point and collective anomalies. Towards the goal of preserving the privacy of industries' information, the smart contracts employ techniques to ensure that only anonymized pointers to the actual data are stored on the ledger while sensitive information remains off-chain. In the same spirit, blockchain technology guarantees the security of the data storage through strong cryptography as well as the integrity of the data through the decentralization of the network and the execution of the smart contracts by the majority of the blockchain network actors. The blockchain component of the Data Traceability Software is based on the Hyperledger Fabric framework, which lays the ground for the deployment of smart contracts and APIs to expose the functionality to the end-users. The results of this work demonstrate that such a system can increase the quality of the end-products and the trustworthiness of the monitoring process in the smart manufacturing domain. The proposed AI-enabled data traceability software can be employed by industries to accurately trace and verify records about quality through the entire production chain and take advantage of the multitude of monitoring records in their databases.

Keywords: blockchain, data quality, industry4.0, product quality

Procedia PDF Downloads 165
733 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 279
732 A Framework for Incorporating Non-Linear Degradation of Conductive Adhesive in Environmental Testing

Authors: Kedar Hardikar, Joe Varghese

Abstract:

Conductive adhesives have found wide-ranging applications in electronics industry ranging from fixing a defective conductor on printed circuit board (PCB) attaching an electronic component in an assembly to protecting electronics components by the formation of “Faraday Cage.” The reliability requirements for the conductive adhesive vary widely depending on the application and expected product lifetime. While the conductive adhesive is required to maintain the structural integrity, the electrical performance of the associated sub-assembly can be affected by the degradation of conductive adhesive. The degradation of the adhesive is dependent upon the highly varied use case. The conventional approach to assess the reliability of the sub-assembly involves subjecting it to the standard environmental test conditions such as high-temperature high humidity, thermal cycling, high-temperature exposure to name a few. In order to enable projection of test data and observed failures to predict field performance, systematic development of an acceleration factor between the test conditions and field conditions is crucial. Common acceleration factor models such as Arrhenius model are based on rate kinetics and typically rely on an assumption of linear degradation in time for a given condition and test duration. The application of interest in this work involves conductive adhesive used in an electronic circuit of a capacitive sensor. The degradation of conductive adhesive in high temperature and humidity environment is quantified by the capacitance values. Under such conditions, the use of established models such as Hallberg-Peck model or Eyring Model to predict time to failure in the field typically relies on linear degradation rate. In this particular case, it is seen that the degradation is nonlinear in time and exhibits a square root t dependence. It is also shown that for the mechanism of interest, the presence of moisture is essential, and the dominant mechanism driving the degradation is the diffusion of moisture. In this work, a framework is developed to incorporate nonlinear degradation of the conductive adhesive for the development of an acceleration factor. This method can be extended to applications where nonlinearity in degradation rate can be adequately characterized in tests. It is shown that depending on the expected product lifetime, the use of conventional linear degradation approach can overestimate or underestimate the field performance. This work provides guidelines for suitability of linear degradation approximation for such varied applications

Keywords: conductive adhesives, nonlinear degradation, physics of failure, acceleration factor model.

Procedia PDF Downloads 117
731 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection

Procedia PDF Downloads 56
730 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation

Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu

Abstract:

Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.

Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing

Procedia PDF Downloads 149
729 Differences in Assessing Hand-Written and Typed Student Exams: A Corpus-Linguistic Study

Authors: Jutta Ransmayr

Abstract:

The digital age has long arrived at Austrian schools, so both society and educationalists demand that digital means should be integrated accordingly to day-to-day school routines. Therefore, the Austrian school-leaving exam (A-levels) can now be written either by hand or by using a computer. However, the choice of writing medium (pen and paper or computer) for written examination papers, which are considered 'high-stakes' exams, raises a number of questions that have not yet been adequately investigated and answered until recently, such as: What effects do the different conditions of text production in the written German A-levels have on the component of normative linguistic accuracy? How do the spelling skills of German A-level papers written with a pen differ from those that the students wrote on the computer? And how is the teacher's assessment related to this? Which practical desiderata for German didactics can be derived from this? In a trilateral pilot project of the Austrian Center for Digital Humanities (ACDH) of the Austrian Academy of Sciences and the University of Vienna in cooperation with the Austrian Ministry of Education and the Council for German Orthography, these questions were investigated. A representative Austrian learner corpus, consisting of around 530 German A-level papers from all over Austria (pen and computer written), was set up in order to subject it to a quantitative (corpus-linguistic and statistical) and qualitative investigation with regard to the spelling and punctuation performance of the high school graduates and the differences between pen- and computer-written papers and their assessments. Relevant studies are currently available mainly from the Anglophone world. These have shown that writing on the computer increases the motivation to write, has positive effects on the length of the text, and, in some cases, also on the quality of the text. Depending on the writing situation and other technical aids, better results in terms of spelling and punctuation could also be found in the computer-written texts as compared to the handwritten ones. Studies also point towards a tendency among teachers to rate handwritten texts better than computer-written texts. In this paper, the first comparable results from the German-speaking area are to be presented. Research results have shown that, on the one hand, there are significant differences between handwritten and computer-written work with regard to performance in orthography and punctuation. On the other hand, the corpus linguistic investigation and the subsequent statistical analysis made it clear that not only the teachers' assessments of the students’ spelling performance vary enormously but also the overall assessments of the exam papers – the factor of the production medium (pen and paper or computer) also seems to play a decisive role.

Keywords: exam paper assessment, pen and paper or computer, learner corpora, linguistics

Procedia PDF Downloads 153
728 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria

Authors: Lujain Khraiba

Abstract:

Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.

Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces

Procedia PDF Downloads 466
727 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.

Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization

Procedia PDF Downloads 125
726 Designing a Socio-Technical System for Groundwater Resources Management, Applying Smart Energy and Water Meter

Authors: S. Mahdi Sadatmansouri, Maryam Khalili

Abstract:

World, nowadays, encounters serious water scarcity problem. During the past few years, by advent of Smart Energy and Water Meter (SEWM) and its installation at the electro-pumps of the water wells, one had believed that it could be the golden key to address the groundwater resources over-pumping issue. In fact, implementation of these Smart Meters managed to control the water table drawdown for short; but it was not a sustainable approach. SEWM has been considered as law enforcement facility at first; however, for solving a complex socioeconomic problem like shared groundwater resources management, more than just enforcement is required: participation to conserve common resources. The well owners or farmers, as water consumers, are the main and direct stakeholders of this system and other stakeholders could be government sectors, investors, technology providers, privet sectors or ordinary people. Designing a socio-technical system not only defines the role of each stakeholder but also can lubricate the communication to reach the system goals while benefits of each are considered and provided. Farmers, as the key participators for solving groundwater problem, do not trust governments but they would trust a fair system in which responsibilities, privileges and benefits are clear. Technology could help this system remained impartial and productive. Social aspects provide rules, regulations, social objects and etc. for the system and help it to be more human-centered. As the design methodology, Design Thinking provides probable solutions for the challenging problems and ongoing conflicts; it could enlighten the way in which the final system could be designed. Using Human Centered Design approach of IDEO helps to keep farmers in the center of the solution and provides a vision by which stakeholders’ requirements and needs are addressed effectively. Farmers would be considered to trust the system and participate in their groundwater resources management if they find the rules and tools of the system fair and effective. Besides, implementation of the socio-technical system could change farmers’ behavior in order that they concern more about their valuable shared water resources as well as their farm profit. This socio-technical system contains nine main subsystems: 1) Measurement and Monitoring system, 2) Legislation and Governmental system, 3) Information Sharing system, 4) Knowledge based NGOs, 5) Integrated Farm Management system (using IoT), 6) Water Market and Water Banking system, 7) Gamification, 8) Agribusiness ecosystem, 9) Investment system.

Keywords: human centered design, participatory management, smart energy and water meter (SEWM), social object, socio-technical system, water table drawdown

Procedia PDF Downloads 276
725 Sustainability from Ecocity to Ecocampus: An Exploratory Study on Spanish Universities' Water Management

Authors: Leyla A. Sandoval Hamón, Fernando Casani

Abstract:

Sustainability has been integrated into the cities’ agenda due to the impact that they generate. The dimensions of greater proliferation of sustainability, which are taken as a reference, are economic, social and environmental. Thus, the decisions of management of the sustainable cities search a balance between these dimensions in order to provide environment-friendly alternatives. In this context, urban models (where water consumption, energy consumption, waste production, among others) that have emerged in harmony with the environment, are known as Ecocity. A similar model, but on a smaller scale, is ‘Ecocampus’ that is developed in universities (considered ‘small cities’ due to its complex structure). So, sustainable practices are being implemented in the management of university campus activities, following different relevant lines of work. The universities have a strategic role in society, and their activities can strengthen policies, strategies, and measures of sustainability, both internal and external to the organization. Because of their mission in knowledge creation and transfer, these institutions can promote and disseminate more advanced activities in sustainability. This model replica also implies challenges in the sustainable management of water, energy, waste, transportation, among others, inside the campus. The challenge that this paper focuses on is the water management, taking into account that the universities consume big amounts of this resource. The purpose of this paper is to analyze the sustainability experience, with emphasis on water management, of two different campuses belonging to two different Spanish universities - one urban campus in a historic city and the other a suburban campus in the outskirts of a large city. Both universities are in the top hundred of international rankings of sustainable universities. The methodology adopts a qualitative method based on the technique of in-depth interviews and focus-group discussions with administrative and academic staff of the ‘Ecocampus’ offices, the organizational units for sustainability management, from the two Spanish universities. The hypotheses indicate that sustainable policies in terms of water management are best in campuses without big green spaces and where the buildings are built or rebuilt with modern style. The sustainability efforts of the university are independent of the kind of (urban – suburban) campus but an important aspect to improve is the degree of awareness of the university community about water scarcity. In general, the paper suggests that higher institutions adapt their sustainability policies depending on the location and features of the campus and their engagement with the water conservation. Many Spanish universities have proposed policies, good practices, and measures of sustainability. In fact, some offices or centers of Ecocampus have been founded. The originality of this study is to learn from the different experiences of sustainability policies of universities.

Keywords: ecocampus, ecocity, sustainability, water management

Procedia PDF Downloads 204
724 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems

Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick

Abstract:

This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.

Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms

Procedia PDF Downloads 215
723 British Female Muslim Converts: An Investigation into Their De-Conversions from Islam

Authors: Mona Alyedreessy

Abstract:

This study, which is based on a qualitative study sample of thirty-four British converts from different ages, ethnicities, social classes, areas and religious backgrounds in London, investigates the common challenges, problems and abuse in the name of Islam that many British female Muslim converts experienced during their time as Muslims, which caused them to leave the faith. It is an important study, as it creates an awareness of the weaknesses found in western Muslim societies and in various Islamic educational programs that causes people to leave Islam and contribute towards its negative reputation in the media. The women in this study shared common problems regarding gender and racial discrimination, identity development, feminism, marriage, parenting, Muslim culture, isolation, extremism, belonging and practising Islam in both Muslim and non-Muslim societies with differing sacrifices and consequences that caused them to de-convert. The study argues that many of the personal, religious and social problems female Muslim converts experience are due to a lack of knowledge about Islam and their rights as Muslim women, which often results in them being vulnerable and influenced by the opinions, attitudes and actions of uneducated, abusive, non-practising and extremist Muslims. For example, it was found that young female converts in particular were often taken advantage of and manipulated into believing that many negative actions displayed by patriarchal Muslim husbands were a part of Islam. This created much confusion, especially when their husbands used specific Quran texts and Hadiths to justify their abuse, authority and attitudes that made them miserable. As a result and based on the positive experiences of some converts, the study found that obtaining a broad Islamic education that started with an intimate study of the Prophet Muhammad’s biography alongside being guided by the teachings of western Muslim scholars contributed greatly towards a more enjoyable conversion journey, as women were able to identify and avoid problematic Muslims and abuse in the name of Islam. This in turn helped to create a healthier family unit and Muslim society. Those who enjoyed being Muslims were able to create a balanced western Muslim identity by negotiating and applying their own morals and western values to their understanding of The Prophet’s biography and The Quran and integrated Islamic values into their own secular western environments that were free from foreign cultural practices. The outcomes of the study also highlight some effective modern approaches to da’wah based on the teachings of The Prophet Mohammad and other prophets for young Arab and Asian Muslims who marry, study and live among non-Muslims and converts.

Keywords: abuse, apostasy, converts, Muslims

Procedia PDF Downloads 217
722 Development and Psychometric Validation of the Hospitalised Older Adults Dignity Scale for Measuring Dignity during Acute Hospital Admissions

Authors: Abdul-Ganiyu Fuseini, Bernice Redley, Helen Rawson, Lenore Lay, Debra Kerr

Abstract:

Aim: The study aimed to develop and validate a culturally appropriate patient-reported outcome measure for measuring dignity for older adults during acute hospital admissions. Design: A three-phased mixed-method sequential exploratory design was used. Methods: Concept elicitation and generation of items for the scale was informed by older adults’ perspectives about dignity during acute hospitalization and a literature review. Content validity evaluation and pre-testing were undertaken using standard instrument development techniques. A cross-sectional survey design was conducted involving 270 hospitalized older adults for evaluation of construct and convergent validity, internal consistency reliability, and test–retest reliability of the scale. Analysis was performed using Statistical Package for the Social Sciences, version 25. Reporting of the study was guided by the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Results: We established the 15-item Hospitalized Older Adults’ Dignity Scale that has a 5-factor structure: Shared Decision-Making (3 items); Healthcare Professional-Patient Communication (3 items); Patient Autonomy (4 items); Patient Privacy (2 items); and Respectful Care (3 items). Excellent content validity, adequate construct and convergent validity, acceptable internal consistency reliability, and good test-retest reliability were demonstrated. Conclusion: We established the Hospitalized Older Adults Dignity Scale as a valid and reliable scale to measure dignity for older adults during acute hospital admissions. Future studies using confirmatory factor analysis are needed to corroborate the dimensionality of the factor structure and external validity of the scale. Routine use of the scale may provide information that informs the development of strategies to improve dignity-related care in the future. Impact: The development and validation of the Hospitalized Older Adults Dignity Scale will provide healthcare professionals with a feasible and reliable scale for measuring older adults’ dignity during acute hospitalization. Routine use of the scale may enable the capturing and incorporation of older patients’ perspectives about their healthcare experience and provide information that informs the development of strategies to improve dignity-related care in the future.

Keywords: dignity, older adults, hospitalisation, scale, patients, dignified care, acute care

Procedia PDF Downloads 77
721 Retrospective Demographic Analysis of Patients Lost to Follow-Up from Antiretroviral Therapy in Mulanje Mission Hospital, Malawi

Authors: Silas Webb, Joseph Hartland

Abstract:

Background: Long-term retention of patients on ART has become a major health challenge in Sub-Saharan Africa (SSA). In 2010 a systematic review of 39 papers found that 30% of patients were no longer taking their ARTs two years after starting treatment. In the same review, it was noted that there was a paucity of data as to why patients become lost to follow-up (LTFU) in SSA. This project was performed in Mulanje Mission Hospital in Malawi as part of Swindon Academy’s Global Health eSSC. The HIV prevalence for Malawi is 10.3%, one of the highest rates in the world, however prevalence soars to 18% in the Mulanje. Therefore it is essential that patients at risk of being LTFU are identified early and managed appropriately to help them continue to participate in the service. Methodology: All patients on adult antiretroviral formulations at MMH, who were classified as ‘defaulters’ (patients missing a scheduled follow up visit by more than two months) over the last 12 months were included in the study. Demographic varibales were collected from Mastercards for data analysis. A comparison group of patients currently not lost to follow up was created by using all of the patients who attended the HIV clinic between 18th-22nd July 2016 who had never defaulted from ART. Data was analysed using the chi squared (χ²) test, as data collected was categorical, with alpha levels set at 0.05. Results: Overall, 136 patients had defaulted from ART over the past 12 months at MMH. Of these, 43 patients had missing Mastercards, so 93 defaulter datasets were analysed. In the comparison group 93 datasets were also analysed and statistical analysis done using Chi-Squared testing. A higher proportion of men in the defaulting group was noted (χ²=0.034) and defaulters tended to be younger (χ²=0.052). 94.6% of patients who defaulted were taking Tenofovir, Lamivudine and Efavirenz, the standard first line ART therapy in Malawi. The mean length of time on ART was 39.0 months (RR: -22.4-100.4) in the defaulters group and 47.3 months (RR: -19.71-114.23) in the control group, with a mean difference of 8.3 less months in the defaulters group (χ ²=0.056). Discussion: The findings in this study echo the literature, however this review expands on that and shows the demographic for the patient at most risk of defaulting and being LTFU would be: a young male who has missed more than 4 doses of ART and is within his first year of treatment. For the hospital, this data is important at it identifies significant areas for public health focus. For instance, fear of disclosure and stigma may be disproportionately affecting younger men, so interventions can be aimed specifically at them to improve their health outcomes. The mean length of time on medication was 8.3 months less in the defaulters group, with a p-value of 0.056, emphasising the need for more intensive follow-up in the early stages of treatment, when patients are at the highest risk of defaulting.

Keywords: anti-retroviral therapy, ART, HIV, lost to follow up, Malawi

Procedia PDF Downloads 169
720 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 112
719 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources

Authors: Ashley Hobson, Ashley Efaw

Abstract:

Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.

Keywords: professionalism, assessments, student learning, student preparedness, ethical practice

Procedia PDF Downloads 15
718 The Effects of Total Resistance Exercises Suspension Exercises Program on Physical Performance in Healthy Individuals

Authors: P. Cavlan, B. Kırmızıgil

Abstract:

Introduction: Each exercise in suspension exercises offer the use of gravity and body weight; and is thought to develop the equilibrium, flexibility and body stability necessary for daily life activities and sports, in addition to creating the correct functional force. Suspension exercises based on body weight focus the human body as an integrated system. Total Resistance Exercises (TRX) suspension training that physiotherapists, athletic health clinics, exercise centers of hospitals and chiropractic clinics now use for rehabilitation purposes. The purpose of this study is to investigate and compare the effects of TRX suspension exercises on physical performance in healthy individuals. Method: Healthy subjects divided into two groups; the study group and the control group with 40 individuals for each, between ages 20 to 45 with similar gender distributions. Study group had 2 sessions of suspension exercises per week for 8 weeks and control group had no exercises during this period. All the participants were given explosive strength, flexibility, strength and endurance tests before and after the 8 week period. The tests used for evaluation were respectively; standing long jump test and single leg (left and right) long jump tests, sit and reach test, sit up and back extension tests. Results: In the study group a statistically significant difference was found between prior- and final-tests in all evaluations, including explosive strength, flexibility, core strength and endurance of the group performing TRX exercises. These values were higher than the control groups’ values. The final test results were found to be statistically different between the study and control groups. Study group showed development in all values. Conclusions: In this study, which was conducted with the aim of investigating and comparing the effects of TRX suspension exercises on physical performance, the results of the prior-tests of both groups were similar. There was no significant difference between the prior and the final values in the control group. It was observed that in the study group, explosive strength, flexibility, strength, and endurance development was achieved after 8 weeks. According to these results, it was shown that TRX suspension exercise program improved explosive strength, flexibility, especially core strength and endurance; therefore the physical performance. Based on the results of our study, it was determined that the physical performance, an indispensable requirement of our life, was developed by the TRX suspension system. We concluded that TRX suspension exercises can be used to improve the explosive strength and flexibility in healthy individuals, as well as developing the muscle strength and endurance of the core region. The specific investigations could be done in this area so that programs that emphasize the TRX's physical performance features could be created.

Keywords: core strength, endurance, explosive strength, flexibility, physical performance, suspension exercises

Procedia PDF Downloads 151
717 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 85
716 Optimization of Heat Source Assisted Combustion on Solid Rocket Motors

Authors: Minal Jain, Vinayak Malhotra

Abstract:

Solid Propellant ignition consists of rapid and complex events comprising of heat generation and transfer of heat with spreading of flames over the entire burning surface area. Proper combustion and thus propulsion depends heavily on the modes of heat transfer characteristics and cavity volume. Fire safety is an integral component of a successful rocket flight failing to which may lead to overall failure of the rocket. This leads to enormous forfeiture in resources viz., money, time, and labor involved. When the propellant is ignited, thrust is generated and the casing gets heated up. This heat adds on to the propellant heat and the casing, if not at proper orientation starts burning as well, leading to the whole rocket being completely destroyed. This has necessitated active research efforts emphasizing a comprehensive study on the inter-energy relations involved for effective utilization of the solid rocket motors for better space missions. Present work is focused on one of the major influential aspects of this detrimental burning which is the presence of an external heat source, in addition to a potential heat source which is already ignited. The study is motivated by the need to ensure better combustion and fire safety presented experimentally as a simplified small-scale mode of a rocket carrying a solid propellant inside a cavity. The experimental setup comprises of a paraffin wax candle as the pilot fuel and incense stick as the external heat source. The candle is fixed and the incense stick position and location is varied to investigate the find the influence of the pilot heat source. Different configurations of the external heat source presence with separation distance are tested upon. Regression rates of the pilot thin solid fuel are noted to fundamentally understand the non-linear heat and mass transfer which is the governing phenomenon. An attempt is made to understand the phenomenon fundamentally and the mechanism governing it. Results till now indicate non-linear heat transfer assisted with the occurrence of flaming transition at selected critical distances. With an increase in separation distance, the effect is noted to drop in a non-monotonic trend. The parametric study results are likely to provide useful physical insight about the governing physics and utilization in proper testing, validation, material selection, and designing of solid rocket motors with enhanced safety.

Keywords: combustion, propellant, regression, safety

Procedia PDF Downloads 147