Search results for: material purchasing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6940

Search results for: material purchasing

1300 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 303
1299 Establishment and Aging Process Analysis in Dermal Fibroblast Cell Culture of Green Turtle (Chelonia mydas)

Authors: Yemima Dani Riani, Anggraini Barlian

Abstract:

Green turtle (Chelonia mydas) is one of well known long-lived turtle. Its age can reach 100 years old. Senescence in green turtle is an interesting process to study because until now no clear explanation has been established about senescence at cellular or molecular level in this species. Since 1999, green turtle announced as an endangered species. Hence, establishment of fibroblast skin cell culture of green turtle may be material for future study of senescence. One common marker used for detecting senescence is telomere shortening. Reduced telomerase activity, the reverse transcriptase enzyme which adds TTAGGG DNA sequence to telomere end, may also cause senescence. The purpose of this research are establish and identify green turtle fibroblast skin cell culture and also compare telomere length and telomerase activity from passage 5 and 14. Primary cell culture made with primary explant method then cultured in Leibovitz-15 (Sigma) supplemented by 10% Fetal Bovine Serum (Sigma) and 100 U/mL Penicillin/Streptomycin (Sigma) at 30 ± 1oC. Cells identified with Rabbit Anti-Vimentin Polyclonal Antibody (Abcam) and Goat Polyclonal Antibody (Abcam) using confocal microscope (Zeiss LSM 170). Telomere length obtained using TeloTAGGG Telomere Length Assay (Roche) while telomerase activity obtained using TeloTAGGG Telomerase PCR ElisaPlus (Roche). Primary cell culture from green turtle skin had fibroblastic morphology and immunocytochemistry test with vimentin antibody proved the culture was fibroblast cell. Measurement of telomere length and telomerase activity showed that telomere length and telomerase activity of passage 14 was greater than passage 5. However, based on morphology, green turtle fibroblast skin cell culture showed senescent morphology. Based on the analysis of telomere length and telomerase activity, suspected fibroblast skin cell culture of green turtles is not undergo aging through telomere shortening.

Keywords: cell culture, chelonia mydas, telomerase, telomere, senescence

Procedia PDF Downloads 427
1298 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood

Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy

Abstract:

In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.

Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage

Procedia PDF Downloads 165
1297 Determination of Rare Earth Element Patterns in Uranium Matrix for Nuclear Forensics Application: Method Development for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements

Authors: Bernadett Henn, Katalin Tálos, Éva Kováss Széles

Abstract:

During the last 50 years, the worldwide permeation of the nuclear techniques induces several new problems in the environmental and in the human life. Nowadays, due to the increasing of the risk of terrorism worldwide, the potential occurrence of terrorist attacks using also weapon of mass destruction containing radioactive or nuclear materials as e.g. dirty bombs, is a real threat. For instance, the uranium pellets are one of the potential nuclear materials which are suitable for making special weapons. The nuclear forensics mainly focuses on the determination of the origin of the confiscated or found nuclear and other radioactive materials, which could be used for making any radioactive dispersive device. One of the most important signatures in nuclear forensics to find the origin of the material is the determination of the rare earth element patterns (REE) in the seized or found radioactive or nuclear samples. The concentration and the normalized pattern of the REE can be used as an evidence of uranium origin. The REE are the fourteen Lanthanides in addition scandium and yttrium what are mostly found together and really low concentration in uranium pellets. The problems of the REE determination using ICP-MS technique are the uranium matrix (high concentration of uranium) and the interferences among Lanthanides. In this work, our aim was to develop an effective chemical sample preparation process using extraction chromatography for separation the uranium matrix and the rare earth elements from each other following some publications can be found in the literature and modified them. Secondly, our purpose was the optimization of the ICP-MS measuring process for REE concentration. During method development, in the first step, a REE model solution was used in two different types of extraction chromatographic resins (LN® and TRU®) and different acidic media for environmental testing the Lanthanides separation. Uranium matrix was added to the model solution and was proved in the same conditions. Methods were tested and validated using REE UOC (uranium ore concentrate) reference materials. Samples were analyzed by sector field mass spectrometer (ICP-SFMS).

Keywords: extraction chromatography, nuclear forensics, rare earth elements, uranium

Procedia PDF Downloads 312
1296 Principles of Risk Management in Surgery Department

Authors: Mohammad H. Yarmohammadian, Masoud Ferdosi, Abbas Haghshenas, Fatemeh Rezaei

Abstract:

Surgical procedures aim at preserving human life and improving quality of their life. However, there are many potential risk sources that can cause serious harm to patients. For centuries, managers believed that technical competence of a surgeon is the only key to a successful surgery. But over the past decade, risks are considered in terms of process-based safety procedures, teamwork and inter departmental communication. Aims: This study aims to determine how the process- biased surgical risk management should be done in terms of project management tool named ABS (Activity Breakdown Structure). Settings and Design: This study was conducted in two stages. First, literature review and meeting with professors was done to determine principles and framework of surgical risk management. Next, responsible teams for surgical patient journey were involved in following meeting to develop the process- biased surgical risk management. Methods and Material: This study is a qualitative research in which focus groups with the inductive approach is used. Sampling was performed to achieve representativeness through intensity sampling biased on experience and seniority. Analysis Method used: context analysis of interviews and consensus themes extracted from FDG meetings discussion was the analysis tool. Results: we developed the patient journey process in 5 main phases, 24 activities and 108 tasks. Then, responsible teams, transposition and allocated places for performing determined. Some activities and tasks themes were repeated in each phases like patient identification and records review because of their importance. Conclusions: Risk management of surgical departments is significant as this facility is the hospital’s largest cost and revenue center. Good communication between surgical team and other clinical teams outside surgery department through process- biased perspective could improve safety of patient under this procedure.

Keywords: risk management, activity breakdown structure (ABS), surgical department, medical sciences

Procedia PDF Downloads 306
1295 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni

Abstract:

The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 405
1294 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 632
1293 Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats

Authors: Rajesh Kumar Suman, Ipseeta Ray Mohanty, Manjusha K. Borde, Ujjawala maheswari, Y. A. Deshmukh

Abstract:

Background: Metabolic syndrome encompasses cluster of risk factors for cardiovascular disease which includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. The incidence of metabolic syndrome is on the rise globally. Objective: The present study was designed to develop a unique animal model that will mimic the pathological features seen in a large pool of individuals with diabetes and metabolic syndrome; suitable for pharmacological screening of drugs beneficial in this condition. Material and Methods: A combination of high fat diet (HFD) and low dose of streptozotocin (STZ) at 30, 35 and 40 mg/kg was used to induce metabolic syndrome co-existing with diabetes mellitus in Wistar rats. Results: The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for our study to induce diabetes mellitus. Rat fed HFD (HF-DC) group showed significant (p < 0.001) increase in body weight on 4th and 7th week as compared with NC (Normal Control) group rats. However, the increase in body weight of HF-DC group rats was not sustained at the end of 10th weeks. Various components of metabolic syndrome such as dyslipidemia {(Increased Triglyceride, total Cholesterol, LDL Cholesterol and decreased HDL Cholesterol)}, diabetes mellitus (Blood Glucose, HbA1c, Serum Insulin, C-peptide), hypertension {Systolic Blood pressure (p < 0.001)} were mimicked in the developed model of metabolic syndrome co existing with diabetes mellitus. In addition significant cardiac injury as indicated by CPK-MB levels, artherogenic index, hs-CRP. The decline in hepatic function {(p < 0.01) increase in the level of SGPT (U/L)} and renal function {(increase in creatinine levels (p < 0.01)} when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis and inflammation in Heart, Pancreas, Liver and Kidney of HFD-DC group as compared to NC. Conclusion: The present study has developed a unique rodent model of metabolic syndrome; with diabetes as an essential component.

Keywords: diabetes, metabolic syndrome, high fat diet, streptozotocin, rats

Procedia PDF Downloads 350
1292 Determining the Policy Space of the Partido Socialista Obrero Español Government in Managing Spain's Economic and Financial Crisis

Authors: A. Pascual Ramsay

Abstract:

Accounts of the management of the economic and euro crisis in Spain have been dominated by an emphasis on external constraints. However, this approach leaves unanswered important questions about the role of domestic political factors. Using systematic qualitative primary research and employing elite interviewing and process tracing, this paper aims to fill this gap for the period of the Partido Socialista Obrero Español (PSOE) administration. The paper shows that domestic politics played a crucial role in the management of the crisis, most importantly by determining the shape of the measures undertaken. In its three distinct stages – downplaying/inaction, reaction/stimulus, and austerity/reform – the PSOE's response was certainly constrained by external factors, most notably EMU membership and the actions of sovereign-bond investors, the ECB and Germany. Yet while these external constraints forced the government to act, domestic political factors fundamentally shaped the content of key measures: the fiscal stimulus, the labour, financial and pension reforms, the refusal to accept a bailout or the reform of the Constitution. Seven factors were particularly influential: i) electoral and political cost, ii) party and partisanship, iii) organised interests, iv) domestic institutions, v) ideological preferences, vi) ineffective decision-making, and vii) judgement and personal characteristics of decision-makers. In conclusion, domestic politics played an important role in the management of the crisis, a role that has been underestimated by dominant approaches focusing on external constraints and weak domestic policy autonomy. The findings provide empirical evidence to support research agendas that identify significant state discretion in the face of international economic integration and an important role for domestic political factors such as institutions, material interests, partisanship and ideology in shaping economic outcomes.

Keywords: economic crisis, Euro, PSOE, Spain

Procedia PDF Downloads 121
1291 The Influence of Training on the Special Aerial Gymnastics Instruments on Selected C-Reactive Proteins in Cadets’ Serum

Authors: Z. Wochyński, K. A. Sobiech, Z. Kobos

Abstract:

To C-Reactive Proteins include ferritin, transferrin, and ceruloplasmin- metalloproteins. The study aimed at assessing an effect of training on the Special Aerial Gymnastics Instruments (SAGI) on changes of serum ferritin, transferrin, and ceruloplasmin and cadets’ physical fitness in comparison with a control group. Fifty-five cadets in the mean age 20 years were included into this study. They were divided into two groups: Group A (N=41) trained on SAGI and Group B (N=14) trained according the standard program of physical education (control group). In both groups, blood was a material for assays. Samples were collected twice before and after training at the start of the program (training I), during (training II), and after education program completion (training III). Commercially available kits were used to assay blood serum ferritin, transferrin, and ceruloplasmin. Cadets’ physical fitness was evaluated with exercise tests before and after education program completion. In Group A, serum post-exercise ferritin decreased statistically insignificantly in training I and II and increased in training III in comparison with pre-exercise values. In Group B, post-exercise serum ferritin decreased statistically insignificantly in training I and III and significantly increased in training II in comparison with the pre-exercise values. In Group A, serum transferrin decreased statistically insignificantly in training I, and significantly increased in training II, whereas in training III it increased insignificantly in comparison with pre-exercise values. In Group B, post-exercise serum transferrin increased statistically significantly in training I, II, and III in comparison with pre-exercise values. I n Group A, serum ceruloplasmin decreased in all three series in comparison with pre-exercise values. In Group B, serum ceruloplasmin increased significantly in training II. It was showed that the training on SAGI significantly decreased serum ceruloplasmin in Group A in all three series of assays and did not produce significant changes in serum ferritin also was showed significant increase in serum transferrin.

Keywords: special aerial gymnastics instruments, ferritin, ceruloplasmin, transferrin

Procedia PDF Downloads 467
1290 Development of Entrepreneurship in Industry on the Basis of Regulation of Transnational Production Chains in the Russian Arctic

Authors: E. N. Vetrova, L.V. Lapochkina, N. V. Nikulina

Abstract:

In the national economy, entrepreneurship plays the role of a buffer between economy and policy for it contributes to improving budget effectiveness and decreasing dependence of economy on the state. Entrepreneurship in industry makes it possible to increase the added value that is formed in production chains and to decrease dependence on import. Under the current circumstances, when sanctions are being imposed, this is especially relevant for Russia and for the realization of projects in the Russian Arctic. However, development of entrepreneurship in industry requires an enlightened state policy. The purpose of the research is elaboration of recommendations for improving economic effectiveness of the realization of the Arctic projects on the basis of conceptual proposals for the development of entrepreneurship in industry. The paper presents the studies of the extractive industry role in the Russian economy and proves its raw material character. The analysis of production chains in industry on the basis of the conception of the added value global chains demonstrated a low added value formed by Russian companies. The study of changes in the structure of economy based on systemic, statistical and comparative analyses revealed no positive changes in the structure of economy over the period under consideration. This is a manifestation of ineffectiveness of the Russian industrial policy in general and within the Arctic region in particular. The authors identified the problems information and implementation of the state industrial policy in the Arctic region and in the development of national entrepreneurship, analyzed the shortcomings of the current state policy in the sphere of the Russian industry. On the basis of the conducted studies, the authors formulated conceptual approaches to change the state policy in the Arctic. The basic idea of the authors is to substantiate the focus of the state regulation on the development of entrepreneurship in industry in the process of the Russian Arctic exploration. At the same time another problem is solved–that of the development of the manufacturing industry in the southern regions of the northwestern part of Russia. The criterion of effectiveness in this case is the economic effectiveness.

Keywords: entrepreneurship in industry, global chains of the added value, government regulation, industrial policies, production chains in the arctic region, economic effectiveness

Procedia PDF Downloads 386
1289 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 377
1288 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete

Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier

Abstract:

Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.

Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior

Procedia PDF Downloads 72
1287 Finite Element Analysis of Shape Memory Alloy Stents in Coronary Arteries

Authors: Amatulraheem Al-Abassi, K. Khanafer, Ibrahim Deiab

Abstract:

The coronary artery stent is a promising technology that can treat various coronary diseases. Materials used for manufacturing medical stents should have high biocompatible properties. Stent alloys, in particular, are remarkably promising good clinical outcomes, however, there is threaten of restenosis (reoccurring of artery narrowing due to fatty plaque), stent recoiling, or in long-term the occurrence of stent fracture. However, stents that are made of Nickel-titanium (Nitinol) can bare extensive plastic deformation and resist restenosis. This shape memory alloy has outstanding mechanical properties. Nitinol is a unique shape memory alloy as it has unique mechanical properties such as; biocompatibility, super-elasticity, and recovery to original shape under certain loads. Stent failure may cause complications in vascular diseases and possibly blockage of blood flow. Thus, studying the behaviors of the stent under different medical conditions will help the doctors and cardiologists to predict when it is necessary to change the stent in order to prevent any severe morbidity outcomes. To the best of our knowledge, there are limited published papers that analyze the stent behavior with regards to the contact surfaces of plaque layer and blood vessel. Thus, stent material properties will be discussed in this investigation to highlight the mechanical and clinical differences between various stents. This research analyzes the performance of Nitinol stent in well-known stent design to determine its bearing with stress and its dislocation in blood vessels, in comparison to stents made of different biocompatible materials. In addition, a study of its performance will be represented in the system. Finite Element Analysis is the core of this study. Thus, a physical representative model will be discussed to show the distribution of stress and strain along the interaction surface between the stent and the artery. The reaction of vascular tissue to the stent will be evaluated to predict the possibility of restenosis within the treated area.

Keywords: shape memory alloy, stent, coronary artery, finite element analysis

Procedia PDF Downloads 204
1286 Seismic Refraction and Resistivity Survey of Ini Local Government Area, South-South Nigeria: Assessing Structural Setting and Groundwater Potential

Authors: Mfoniso Udofia Aka

Abstract:

A seismic refraction and resistivity survey was conducted in Ini Local Government Area, South-South Nigeria, to evaluate the structural setting and groundwater potential. The study involved 20 Vertical Electrical Soundings (VES) using an ABEM Terrameter with a Schlumberger array and a 400-meter electrode spread, analyzed with WinResist software. Concurrently, 20 seismic refraction surveys were performed with a Geometric ES 3000 12-Channel seismograph, employing a 60-meter slant interval. The survey identified three distinct geological layers: top, middle, and lower. Seismic velocities (Vp) ranged from 209 to 500 m/s in the top layer, 221 to 1210 m/s in the middle layer, and 510 to 1700 m/s in the lower layer. Secondary seismic velocities (Vs) ranged from 170 to 410 m/s in the topsoil, 205 to 880 m/s in the middle layer, and 480 to 1120 m/s in the lower layer. Poisson’s ratios varied from -0.029 to -7.709 for the top layer, -0.027 to -6.963 for the middle layer, and -0.144 to -6.324 for the lower layer. The depths of these layers were approximately 1.0 to 3.0 meters for the top layer, 4.0 to 12.0 meters for the middle layer, and 8.0 to 14.5 meters for the lower layer. The topsoil consists of a surficial layer overlaid by reddish/clayey laterite and fine to medium coarse-grained sandy material, identified as the auriferous zone. Resistivity values were 1300 to 3215 Ωm for the topsoil, 720 to 1600 Ωm for the laterite, and 100 to 1350 Ωm for the sandy zone. Aquifer thickness and depth varied, with shallow aquifers ranging from 4.5 to 15.2 meters, medium-depth aquifers from 15.5 to 70.0 meters, and deep aquifers from 4.0 to 70.0 meters. Locations 1, 15, and 13 exhibited favorable water potential with shallow formations, while locations 5, 11, 9, and 14 showed less potential due to the lack of fractured or weathered zones. The auriferous sandy zone indicated significant potential for industrial development. Future surveys should consider using a more robust energy source to enhance data acquisition and accuracy.

Keywords: hydrogeological, aquifer, seismic section geo-electric section, stratigraphy

Procedia PDF Downloads 37
1285 Difficulties and Mistakes in Diagnosis During Brucellosis in Children

Authors: Taghi-Zada T. G., Hajiyeva U. K.

Abstract:

Recent years, due to the development of tourism, migration and globalization, brucellosis has spread to non-endemic regions of the country in Azerbaijan and this disease has become one of the main priority areas of medicine. In our daily practice, we face patients with specific symptoms of brucellosis and also infected with this disease but misdiagnosed. It should also be noted that the symptoms and signs of brucellosis are very diverse, and since none of these signs are specific enough to confirm the diagnosis, it creates difficulties in its timely detection and diagnosis. The main purpose of the work. Therefore, the main goal of the work is to investigate the cases of delay in making the correct diagnosis in children with brucellosis and the mistakes in this matter. Material and method. 50 children with brucellosis between the ages of 6 months and 17 years were examined. The medical history and anamnesis of these children were collected, clinical-instrumental examination, and serological tests for brucellosis were performed. Patients were divided into 2 groups, taking into account the specificity of symptoms and the timely diagnosis Results. Group I included 15 (40%) children aged 3-17 years. The main specific symptoms of brucellosis in these patients; persistent or long-term fever, night sweats, arthralgia were observed. In addition to specific symptoms, anamnesis and a specific serological test confirmed the diagnosis of brucellosis. 30 (60%) patients included in group II were misdiagnosed. 3 patients (up to 1 year) were diagnosed with sepsis, 6 with acute rheumatic fever, 10 with systemic diseases, 2 with tuberculosis, 5 with Covid 19, and 4 with unspecified fever. However, we included serological tests. detailed examination revealed the presence of brucellosis in them. As can be seen, compared to group I (40%) children included in group II (60%) In modern times, brucellosis manifests itself with its own characteristics, that is, imitating a number of other diseases, which has led to wrong diagnosis. Conclusion. Thus, the lack of specificity of clinical symptoms during brucellosis in children makes diagnosis difficult, causes mistakes and non-recognition of the disease. With this in mind, physicians in predominantly endemic and even sub-endemic areas should remain vigilant about this disease and consider brucellosis in the differential diagnosis of almost every unexplained medical problem until proven otherwise.

Keywords: brucellosis, pediatrics, diagnostics, serological tests

Procedia PDF Downloads 22
1284 Multi-Stakeholder Involvement in Construction and Challenges of Building Information Modeling Implementation

Authors: Zeynep Yazicioglu

Abstract:

Project development is a complex process where many stakeholders work together. Employers and main contractors are the base stakeholders, whereas designers, engineers, sub-contractors, suppliers, supervisors, and consultants are other stakeholders. A combination of the complexity of the building process with a large number of stakeholders often leads to time and cost overruns and irregular resource utilization. Failure to comply with the work schedule and inefficient use of resources in the construction processes indicate that it is necessary to accelerate production and increase productivity. The development of computer software called Building Information Modeling, abbreviated as BIM, is a major technological breakthrough in this area. The use of BIM enables architectural, structural, mechanical, and electrical projects to be drawn in coordination. BIM is a tool that should be considered by every stakeholder with the opportunities it offers, such as minimizing construction errors, reducing construction time, forecasting, and determination of the final construction cost. It is a process spreading over the years, enabling all stakeholders associated with the project and construction to use it. The main goal of this paper is to explore the problems associated with the adoption of BIM in multi-stakeholder projects. The paper is a conceptual study, summarizing the author’s practical experience with design offices and construction firms working with BIM. In the transition period to BIM, three of the challenges will be examined in this paper: 1. The compatibility of supplier companies with BIM, 2. The need for two-dimensional drawings, 3. Contractual issues related to BIM. The paper reviews the literature on BIM usage and reviews the challenges in the transition stage to BIM. Even on an international scale, the supplier that can work in harmony with BIM is not very common, which means that BIM's transition is continuing. In parallel, employers, local approval authorities, and material suppliers still need a 2-D drawing. In the BIM environment, different stakeholders can work on the same project simultaneously, giving rise to design ownership issues. Practical applications and problems encountered are also discussed, providing a number of suggestions for the future.

Keywords: BIM opportunities, collaboration, contract issues about BIM, stakeholders of project

Procedia PDF Downloads 104
1283 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 105
1282 Gene Expressions in Left Ventricle Heart Tissue of Rat after 150 Mev Proton Irradiation

Authors: R. Fardid, R. Coppes

Abstract:

Introduction: In mediastinal radiotherapy and to a lesser extend also in total-body irradiation (TBI) radiation exposure may lead to development of cardiac diseases. Radiation-induced heart disease is dose-dependent and it is characterized by a loss of cardiac function, associated with progressive heart cells degeneration. We aimed to determine the in-vivo radiation effects on fibronectin, ColaA1, ColaA2, galectin and TGFb1 gene expression levels in left ventricle heart tissues of rats after irradiation. Material and method: Four non-treatment adult Wistar rats as control group (group A) were selected. In group B, 4 adult Wistar rats irradiated to 20 Gy single dose of 150 Mev proton beam locally in heart only. In heart plus lung irradiate group (group C) 4 adult rats was irradiated by 50% of lung laterally plus heart radiation that mentioned in before group. At 8 weeks after radiation animals sacrificed and left ventricle heart dropped in liquid nitrogen for RNA extraction by Absolutely RNA® Miniprep Kit (Stratagen, Cat no. 400800). cDNA was synthesized using M-MLV reverse transcriptase (Life Technologies, Cat no. 28025-013). We used Bio-Rad machine (Bio Rad iQ5 Real Time PCR) for QPCR testing by relative standard curve method. Results: We found that gene expression of fibronectin in group C significantly increased compared to control group, but it was not showed significant change in group B compared to group A. The levels of gene expressions of Cola1 and Cola2 in mRNA did not show any significant changes between normal and radiation groups. Changes of expression of galectin target significantly increased only in group C compared to group A. TGFb1 expressions in group C more than group B showed significant enhancement compared to group A. Conclusion: In summary we can say that 20 Gy of proton exposure of heart tissue may lead to detectable damages in heart cells and may distribute function of them as a component of heart tissue structure in molecular level.

Keywords: gene expression, heart damage, proton irradiation, radiotherapy

Procedia PDF Downloads 490
1281 Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery

Authors: Kailas L. Wasewar

Abstract:

Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid.

Keywords: biobutanol, separation, ionic liquids, sustainability, biorefinery, waste biomass

Procedia PDF Downloads 95
1280 Investigation of the Prevalence, Phenotypes, and Risk Factors Associated with Demodex Infestation and Its Relationship with Acne

Authors: Sina Alimohammadi, Mahnaz Banihashemi, Maryam Poursharif

Abstract:

Demodex is a mandatory parasite of pilosebaceous. D. folliculorum lives as a single parasite or as a number of parasites in hair follicles, and D. brevis as a single parasite living in sebaceous glands. Transmission of Demodex from one person to another requires direct skin contact; it also has a greater density in the forehead, cheeks, nose, and nasolabial folds. Demodex can cause some clinical symptoms such as follicular pityriasis, rosacea-like demodicosis, postural folliculitis, papules, seborrheic dermatitis, blepharitis, dermatitis around the lips, and hyperpigmented spots. In this study, the prevalence of Demodex species in patients referred to the dermatology department of Sayad Shirazi Hospital Gorgan, Iran, in the years 2019-2020 was investigated. Material and Methods: The study population consisted of 242 samples taken from the people referred to the dermatology department of Sayad Shirazi Hospital during the years 2019-2020, which were sampled by adhesive tape. All of the participants completed the questionnaires. The samples were examined microscopically for the presence of Demodex. Results: Out of 242 participants, 67 (27.68%) were infected with Demodex. Most cases of infection were observed in the group of 21 to 30 years (28 people; 11.57%) and then in the group of 31 to 40 years (21 people; 8.67%). Also, in the group of people under 10 years and over 60 years, no positive cases (0%) of Demodex were observed in microscopic examinations. Out of 11 variables, there was a statistically significant difference in relation to the three variables of age (P = 0.000003), use of cleansing solutions (P = 0.002), and the presence of acne (P = 0.0013). Conclusion: According to the results of this study, it was found that the incidence of Demodex in one group of acne patients is higher than in others, which emphasizes the possible role of Demodex in the pathogenesis of acne. In this study, there was an inverse relationship between the incidence of Demodex and the use of skin cleansing solutions. Also, the prevalence of Demodex is higher in the group of 20-30 years, and its prevalence does not increase with age. Due to the possibility of drug resistance in the future, regular studies on genotyping and drug resistance are recommended.

Keywords: acne, demodex, mite, prevalence

Procedia PDF Downloads 92
1279 The Role of Zakat on Sustainable Economic Development by Rumah Zakat

Authors: Selamat Muliadi

Abstract:

This study aimed to explain conceptual the role of Zakat on sustainable economic development by Rumah Zakat. Rumah Zakat is a philanthropic institution that manages zakat and other social funds through community empowerment programs. In running the program, including economic empowerment and socio health services are designed for these recipients. Rumah Zakat's connection with the establisment of Sustainable Development Goals (SDGs) which is to help impoverished recipients economically and socially. It’s an important agenda that the government input into national development, even the region. The primary goal of Zakat on sustainable economic development, not only limited to economic variables but based on Islamic principles, has comprehensive characteristics. The characteristics include moral, material, spiritual, and social aspects. In other words, sustainable economic development is closely related to improving people’s living standard (Mustahiq). The findings provide empiricial evidence regarding the positive contribution and effectiveness of zakat targeting in reducing poverty and improve the welfare of people related with the management of zakat. The purpose of this study was to identify the role of Zakat on sustainable economic development, which was applied by Rumah Zakat. This study used descriptive method and qualitative analysis. The data source was secondary data collected from documents and texts related to the research topic, be it books, articles, newspapers, journals, or others. The results showed that the role of zakat on sustainable economic development by Rumah Zakat has been quite good and in accordance with the principle of Islamic economics. Rumah Zakat programs are adapted to support intended development. The contribution of the productive program implementation has been aligned with four goals in the Sustainable Development Goals, i.e., Senyum Juara (Quality Education), Senyum Lestari (Clean Water and Sanitation), Senyum Mandiri (Entrepreneur Program) and Senyum Sehat (Free Maternity Clinic). The performance of zakat in the sustainable economic empowerment community at Rumah Zakat is taking into account dimensions such as input, process, output, and outcome.

Keywords: Zakat, social welfare, sustainable economic development, charity

Procedia PDF Downloads 138
1278 Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu

Authors: Adha Bayu Wijaya, A. Zainal Abidin, Naufal Baihaqi, Joko Suprayitno, Astika Titistiti, Muslim Adi Wijaya, Endah Tri Lestari, Agung Wibowo

Abstract:

Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR).

Keywords: sulphur, innovation, paving block, CSR, sulphur paving

Procedia PDF Downloads 79
1277 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 387
1276 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: control, milling, multibody, robotic, simulation

Procedia PDF Downloads 250
1275 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 280
1274 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 79
1273 Embodied Spirituality in Gestalt Therapy

Authors: Silvia Alaimo

Abstract:

This lecture brings to our attention the theme of spirituality within Gestalt therapy’s theoretical and clinical perspectives and which is closely connected to the fertile emptiness and creative indifference’ experiences. First of all, the premise that must be done is the overcoming traditional western culture’s philosophical and religious misunderstandings, such as the dicotomy between spirituality and pratical/material daily life, as well as the widespread secular perspective of classic psychology. Even fullness and emptiness have traditionally been associated with the concepts of being and not being. "There is only one way through which we can contact the deepest layers of our existence, rejuvenate our thinking and reach intuition (the harmony of thought and being): inner silence" (Perls) *. Therefore, "fertile void" doesn't mean empty in itself, but rather an useful condition of every creative and responsible act, making room for a deeper dimension close to spirituality. Spirituality concerns questions about the meaning of existence, which lays beyond the concrete and literal dimension, looking for the essence of things, and looking at the value of personal experience. Looking at fundamentals of Gestalt epistemology, phenomenology, aesthetics, and the relationship, we can reach the heart of a therapeutic work that takes spiritual contours and which are based on an embodied (incarnate size), through the relational aesthetic knowledge (Spagnuolo Lobb ), the deep contact with each other, the role of compassion and responsibility, as the patient's recognition criteria (Orange, 2013) rooted in the body. The aesthetic dimension, like the spiritual dimension to which it is often associated, is a subtle dimension: it is the dimension of the essence of things, of their "soul." In clinical practice, it implies that the relationship between therapist and patient is "in the absence of judgment," also called "zero point of creative indifference," expressed by ‘therapeutic mentality’. It consists in following with interest and authentic curiosity where the patient wants to go and support him in his intentionality of contact. It’s a condition of pure and simple awareness, of the full acceptance of "what is," a moment of detachment from one's own life in which one does not take oneself too seriously, a starting point for finding a center of balance and integration that brings to the creative act, to growth, and, as Perls would say, to the excitement and adventure of living.

Keywords: spirituality, bodily, embodied aesthetics, phenomenology, relationship

Procedia PDF Downloads 139
1272 Nanotechnology in Construction as a Building Security

Authors: Hanan Fayez Hussein

Abstract:

‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.

Keywords: nanomaterial, global warming, building security, smart homes

Procedia PDF Downloads 86
1271 The Political Economy of Green Trade in the Context of US-China Trade War: A Case Study of US Biofuels and Soybeans

Authors: Tonghua Li

Abstract:

Under the neoliberal corporate food regime, biofuels are a double-edged sword that exacerbates tensions between national food security and trade in green agricultural products. Biofuels have the potential to help achieve green sustainable development goals, but they threaten food security by exacerbating competition for land and changing global food trade patterns. The U.S.-China trade war complicates this debate. Under the influence of different political and corporate coordination mechanisms in China and the US, trade disputes can have different impacts on sustainable agricultural practices. This paper develops an actor-centred ‘network governance framework’ focusing on trade in soybean and corn-based biofuels to explain how trade wars can change the actions of governmental and non-governmental actors in the context of oligopolistic competition and market concentration in agricultural trade. There is evidence that the US-China trade decoupling exacerbates the conflict between national security, free trade in agriculture, and the realities and needs of green and sustainable energy development. The US government's trade policies reflect concerns about China's relative gains, leading to a loss of trade profits, making it impossible for the parties involved to find a balance between the three objectives and, consequently, to get into a biofuels and soybean industry dilemma. Within the setting of prioritizing national security and strategic interests, the government has replaced the dominant position of large agribusiness in the neoliberal food system, and the goal of environmental sustainability has been marginalized by high politics. In contrast, China faces tensions in the trade war between food security self-sufficiency policy and liberal sustainable trade, but the state-capitalist model ensures policy coordination and coherence in trade diversion and supply chain adjustment. Despite ongoing raw material shortages and technological challenges, China remains committed to playing a role in global environmental governance and promoting green trade objectives.

Keywords: food security, green trade, biofuels, soybeans, US-China trade war

Procedia PDF Downloads 11