Search results for: web 2.0 applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6457

Search results for: web 2.0 applications

5947 Rational Design and Synthesis of 2D/3D Conjugated Porous Polymers via Facile and 'Greener' Direct Arylation Polycondensation

Authors: Hassan Bohra, Mingfeng Wang

Abstract:

Conjugated porous polymers (CPPs) are amorphous, insoluble and highly robust organic semiconductors that have been largely synthesized by traditional transition-metal catalyzed reactions. The distinguishing feature of CPP materials is that they combine microporosity and high surface areas with extended conjugation, making them ideal for versatile applications such as separation, catalysis and energy storage. By applying a modular approach to synthesis, chemical and electronic properties of CPPs can be tailored for specific applications making these materials economical alternatives to inorganic semiconductors. Direct arylation - an environmentally benign alternative to traditional polymerization reactions – is one such reaction that extensively over the last decade for the synthesis of linear p-conjugated polymers. In this report, we present the synthesis and characterization of a new series of robust conjugated porous polymers synthesized by facile direct arylation polymerization of thiophene-flanked acceptor building blocks with multi-brominated aryls with different geometries. We observed that the porosities and morphologies of the polymers are determined by the chemical structure of the aryl bromide used. Moreover, good control of the optical bandgap in the range 2.53 - 1.3 eV could be obtained by using different building blocks. Structure-property relationships demonstrated in this study suggest that direct arylation polymerization is an attractive synthetic tool for the rational design of porous organic materials with tunable photo-physical properties for applications in photocatalysis, energy storage and conversion.

Keywords: direct arylation, conjugated porous polymers, triazine, photocatalysis

Procedia PDF Downloads 301
5946 Exploring the Potential of Blockchain to Improve Higher Education

Authors: Tony Cripps, Larry Kimber

Abstract:

This paper will begin by briefly explaining how blockchain technology works. Then, after highlighting a few of the ways it promises to heavily impact all aspects of the digital landscape, the focus will shift to Blockchain in the field of education, with specific emphasis placed on practical applications in foreign language education. Blockchain is a decentralized Internet-based software application that guarantees truth in transactions. This means whenever two parties engage in a transaction using Blockchain, it is time-stamped, added to a block of other transactions, and then permanently attached to an unalterable ‘chain’ of blocks. The potential for developing applications with Blockchain is therefore immense, since software systems that ensure the impossibility of outside tampering are invaluable. Innovative ideas in every imaginable domain are presently being entertained and Blockchain in education is no exception. For instance, records kept within and between institutions of students’ grade performance, academic achievement and verification of assignment/course completion are just a few examples of how this new technology might potentially be used to revolutionize education. It is hoped that this paper will be of use to all educators interested in the application of technology in the field of education.

Keywords: blockchain, disruption, potential, technology

Procedia PDF Downloads 141
5945 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor

Procedia PDF Downloads 524
5944 Comparison of Web Development Using Framework over Library

Authors: Syamsul Syafiq, Maslina Daud, Hafizah Hasan, Ahmad Zairi, Shazil Imri, Ezaini Akmar, Norbazilah Rahim

Abstract:

Over recent years, web development has changed significantly. Driven largely by the rise of trends like mobiles, the world of development is rapidly evolving. The rise of the Internet makes web applications crucial nowadays. The web application has been an interface for a company and one of the ways they present their portfolio to the client. On the other hand, the web has become part of the file management system which takes over the role of paper. Due to high demand in web applications, developers are required to develop a web application that are cost-effective, secure and well coded. A framework has been proposed to develop an application rather than using library style development. The framework is helping the developer in creating the structure of a web automatically. This paper will compare the advantages and disadvantages of web development using framework against library-style development. This comparison is based on a previous research paper focusing on two main indicators, which are the impact to management and impact to the developer.

Keywords: framework, library style development, web application development, traditional web, static web, dynamic web

Procedia PDF Downloads 228
5943 Towards Incorporating Context Awareness into Business Process Management

Authors: Xiaohui Zhao, Shahan Mafuz

Abstract:

Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.

Keywords: business process adaptation, business process evolution, business process modelling, and context awareness

Procedia PDF Downloads 419
5942 The Impact of Work Stress on Professionals' Life and Health: The Usage of Instant Messaging Applications

Authors: Pui-Lai To, Chechen Liao, Ming-Chi Sung

Abstract:

Work and family life are the most important areas for men and women today. Every professional is required to meet and fulfill the responsibilities of work and family roles. Although the development and popularity of communication technology bring a lot of benefits, including effective and efficient communication, may also generate conflicts between work and family life. Since mobile devices and the applications of mobile devices, such as instant messages, are ubiquitous, the boundaries of work and family roles are increasingly blurred. Professionals may be in the risk of work over-loading and work-family conflict. This study examines the impact of work stress on professionals’ life and health in the context of instant messaging application of smart phone. This study uses a web-based questionnaire to collect samples. The questionnaires are sent via virtual community sites, instant messaging applications, and e-mail. The study develops and empirically validates a work-family conflict model by integrating the pressure theory and technostress factors. The causal relationship between variables in the research model is tested. In terms of data analysis, Partial Least Square (PLS) in Structural Equation Modeling (SEM) is used for sample analysis and research model testing. The results of this study are as follows. First, both the variables of work-related stress and technological violations positively affect the work-family conflict. Second, both the variables of work-loading and technology-overloading have no effect on work-family conflict. Third, work-family conflict has negative effect on job satisfaction, family satisfaction, physical health, and mental health.

Keywords: mental health, physical health, technostress, work-family conflict, work-related stress

Procedia PDF Downloads 305
5941 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil

Authors: Denise Levy

Abstract:

Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.

Keywords: information and communication technologies, nuclear technology, science communication, society and education

Procedia PDF Downloads 328
5940 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 149
5939 Ceramic Composites and Its Applications for Pb Adsorption

Authors: C. L. Popa, S. L. Iconaru, A. Costescu, C. S. Ciobanu, M. Motelica Heino, R. Guegan, D. Predoi

Abstract:

Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated.

Keywords: teos, hydroxyapatite, environment applications, biosystems engineering

Procedia PDF Downloads 388
5938 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 320
5937 Internet of Things Based Battery Management System

Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat

Abstract:

The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.

Keywords: electric vehicles, internet of things, sensors, state of charge, state of health

Procedia PDF Downloads 205
5936 Sol-Gel SiO2-TiO2 Multilayer Coatings for Anti-Reflective Applications

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm.

Keywords: thin films, optical properties, sol-gel, multilayer

Procedia PDF Downloads 408
5935 Anti-Forensic Countermeasure: An Examination and Analysis Extended Procedure for Information Hiding of Android SMS Encryption Applications

Authors: Ariq Bani Hardi

Abstract:

Empowerment of smartphone technology is growing very rapidly in various fields of science. One of the mobile operating systems that dominate the smartphone market today is Android by Google. Unfortunately, the expansion of mobile technology is misused by criminals to hide the information that they store or exchange with each other. It makes law enforcement more difficult to prove crimes committed in the judicial process (anti-forensic). One of technique that used to hide the information is encryption, such as the usages of SMS encryption applications. A Mobile Forensic Examiner or an investigator should prepare a countermeasure technique if he finds such things during the investigation process. This paper will discuss an extension procedure if the investigator found unreadable SMS in android evidence because of encryption. To define the extended procedure, we create and analyzing a dataset of android SMS encryption application. The dataset was grouped by application characteristics related to communication permissions, as well as the availability of source code and the documentation of encryption scheme. Permissions indicate the possibility of how applications exchange the data and keys. Availability of the source code and the encryption scheme documentation can show what the cryptographic algorithm specification is used, how long the key length, how the process of key generation, key exchanges, encryption/decryption is done, and other related information. The output of this paper is an extended or alternative procedure for examination and analysis process of android digital forensic. It can be used to help the investigators while they got a confused cause of SMS encryption during examining and analyzing. What steps should the investigator take, so they still have a chance to discover the encrypted SMS in android evidence?

Keywords: anti-forensic countermeasure, SMS encryption android, examination and analysis, digital forensic

Procedia PDF Downloads 130
5934 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 137
5933 Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method

Authors: P. C. Okafor, A. J. Ekpunobi

Abstract:

Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed.

Keywords: copper sulphide (CuS), Manganese (Mn) doping, electrodeposition, optical band gap, optical conductivity, electrical conductivity

Procedia PDF Downloads 725
5932 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications

Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran

Abstract:

Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.

Keywords: lipase, monomer, polycaprolactone, polymerization

Procedia PDF Downloads 299
5931 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 412
5930 The Construction of Research-Oriented/Practice-Oriented Engineering Testing and Measurement Technology Course under the Condition of New Technology

Authors: He Lingsong, Wang Junfeng, Tan Qiong, Xu Jiang

Abstract:

The paper describes efforts on reconstruction methods of engineering testing and measurement technology course by applying new techniques and applications. Firstly, flipped classroom was introduced. In-class time was used for in-depth discussions and interactions while theory concept teaching was done by self-study course outside of class. Secondly, two hands-on practices of technique applications, including the program design of MATLAB Signal Analysis and the measurement application of Arduino sensor, have been covered in class. Class was transformed from an instructor-centered teaching process into an active student-centered learning process, consisting of the pre-class massive open online course (MOOC), in-class discussion and after-class practice. The third is to change sole written homework to the research-oriented application practice assignments, so as to enhance the breadth and depth of the course.

Keywords: testing and measurement, flipped classroom, MOOC, research-oriented learning, practice-oriented learning

Procedia PDF Downloads 151
5929 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 68
5928 Enhancing Embedded System Efficiency with Digital Signal Processing Cores

Authors: Anil Dhanawade, Akshay S., Harshal Lakesar

Abstract:

This paper presents a comprehensive analysis of the performance advantages offered by DSP (Digital Signal Processing) cores compared to traditional MCU (Microcontroller Unit) cores in the execution of various functions critical to real-time applications. The focus is on the integration of DSP functionalities, specifically in the context of motor control applications such as Field-Oriented Control (FOC), trigonometric calculations, back-EMF estimation, digital filtering, and high-resolution PWM generation. Through comparative analysis, it is demonstrated that DSP cores significantly enhance processing efficiency, achieving faster execution times for complex mathematical operations essential for precise torque and speed control. The study highlights the capabilities of DSP cores, including single-cycle Multiply-Accumulate (MAC) operations and optimized hardware for trigonometric functions, which collectively reduce latency and improve real-time performance. In contrast, MCU cores, while capable of performing similar tasks, typically exhibit longer execution times due to reliance on software-based solutions and lack of dedicated hardware acceleration. The findings underscore the critical role of DSP cores in applications requiring high-speed processing and low-latency response, making them indispensable in automotive, industrial, and robotics sectors. This work serves as a reference for future developments in embedded systems, emphasizing the importance of architecture choice in achieving optimal performance in demanding computational tasks.

Keywords: assembly code, DSP core, instruction set, MCU core

Procedia PDF Downloads 25
5927 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT

Procedia PDF Downloads 348
5926 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 154
5925 Awareness among Medical Students and Faculty about Integration of Artifical Intelligence Literacy in Medical Curriculum

Authors: Fatima Faraz

Abstract:

BACKGROUND: While Artificial intelligence (AI) provides new opportunities across a wide variety of industries, healthcare is no exception. AI can lead to advancements in how the healthcare system functions and improves the quality of patient care. Developing countries like Pakistan are lagging in the implementation of AI-based solutions in healthcare. This demands increased knowledge and AI literacy among health care professionals. OBJECTIVES: To assess the level of awareness among medical students and faculty about AI in preparation for teaching AI basics and data science applications in clinical practice in an integrated medical curriculum. METHODS: An online 15-question semi-structured questionnaire, previously tested and validated, was delivered among participants through convenience sampling. The questionnaire composed of 3 parts: participant’s background knowledge, AI awareness, and attitudes toward AI applications in medicine. RESULTS: A total of 182 students and 39 faculty members from Rawalpindi Medical University, Pakistan, participated in the study. Only 26% of students and 46.2% of faculty members responded that they were aware of AI topics in clinical medicine. The major source of AI knowledge was social media (35.7%) for students and professional talks and colleagues (43.6%) for faculty members. 23.5% of participants answered that they personally had a basic understanding of AI. Students and faculty (60.1%) were interested in AI in patient care and teaching domain. These findings parallel similar published AI survey results. CONCLUSION: This survey concludes interest among students and faculty in AI developments and technology applications in healthcare. Further studies are required in order to correctly fit AI in the integrated modular curriculum of medical education.

Keywords: medical education, data science, artificial intelligence, curriculum

Procedia PDF Downloads 105
5924 Students’ Perceptions of Mobile Learning: Case Study of Kuwait

Authors: Rana AlHajri, Salah Al-Sharhan, Ahmed Al-Hunaiyyan

Abstract:

Mobile learning is a new learning landscape that offers opportunity for collaborative, personal, informal, and students’ centered learning environment. In implementing any learning system such as a mobile learning environment, learners’ expectations should be taken into consideration. However, there is a lack of studies on this aspect, particularly in the context of Kuwait higher education (HE) institutions. This study focused on how students perceive the use of mobile devices in learning. Although m-learning is considered as an effective educational tool in developed countries, it is not yet fully utilized in Kuwait. The study reports on the results of a survey conducted on 623 HE students in Kuwait to a better understand students' perceptions and opinions about the effectiveness of using mobile learning systems. An analysis of quantitative survey data is presented. The findings indicated that Kuwait HE students are very familiar with mobile devices and its applications. The results also reveal that students have positive perceptions of m-learning, and believe that video-based social media applications enhance the teaching and learning process.

Keywords: higher education, mobile learning, social media, students’ perceptions

Procedia PDF Downloads 374
5923 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 319
5922 Innovation Trends in Latin America Countries

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

This paper analyses innovation trends in Latin America countries by means of the number of patent applications filed by residents and non-residents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in Argentina, Brazil Chile, and Mexico. These changes may suggest that firms’ innovative activity has been modified as a result of implementing a particular science, technology and innovation (STI) policy. Accordingly, the new regulations implemented in these countries during 1980s and 1990s have influenced their intellectual property regimes. The question conducting this research is thus how STI policies in these countries have affected their innovation activity? The results achieved in this research confirm the existence of multiple structural changes in the series of patent applications resulting from STI policies implemented in these countries.

Keywords: econometric methods, innovation activity, Latin America countries, patents, science, technology and innovation policy

Procedia PDF Downloads 286
5921 Artificial Intelligence as a User of Copyrighted Work: Descriptive Study

Authors: Dominika Collett

Abstract:

AI applications, such as machine learning, require access to a vast amount of data in the training phase, which can often be the subject of copyright protection. During later usage, the various content with which the application works can be recorded or made available on the basis of which it produces the resulting output. The EU has recently adopted new legislation to secure machine access to protected works under the DSM Directive; but, the issue of machine use of copyright works is not clearly addressed. However, such clarity is needed regarding the increasing importance of AI and its development. Therefore, this paper provides a basic background of the technology used in the development of applications in the field of computer creativity. The second part of the paper then will focus on a legal analysis of machine use of the authors' works from the perspective of existing European and Czech legislation. The main results of the paper discuss the potential collision of existing legislation in regards to machine use of works with special focus on exceptions and limitations. The legal regulation of machine use of copyright work will impact the development of AI technology.

Keywords: copyright, artificial intelligence, legal use, infringement, Czech law, EU law, text and data mining

Procedia PDF Downloads 129
5920 Construction of a Radial Centrifuge Pump for Agricultural Applications

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

With the evolution of the productive processes, demonstrated mainly by the presence every time larger of the irrigation and to crescent it disputes for water, accompanied by your shortage (distances every time larger), there is need to project facilities that can provide supply of water with larger speed and efficiency. Being like this, the presence of hydraulic pumps in an irrigation project or water supply for small communities, is of highest importance, and the knowledge of the fundamental parts to your good operation it deserves the due attention and care. Hydraulic pumps are machines of flow, whose function is to supply energy for the water, in order to press down her, through the conversion of mechanical energy of your originating from rotor a motor the combustion or of an electric motor. This way, the hydraulic pumps are had as generating hydraulic machines. The objective of this work was to project and to build a radial centrifugal pump for agricultural application in small communities.

Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigation

Procedia PDF Downloads 374
5919 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection

Authors: Christina Wainikka, Besrat Tesfaye

Abstract:

Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.

Keywords: baltic sea region, comparative law, SME, utility model

Procedia PDF Downloads 118
5918 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 213