Search results for: tubular composite structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5993

Search results for: tubular composite structures

5543 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 419
5542 Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water

Authors: S. Mowafi, A. Abou El-Kheir, M. Abou Taleb, H. El-Sayed

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample.

Keywords: chlorine, protein, potassium iodide, water

Procedia PDF Downloads 377
5541 Effects of Hypolipidemic Agents in Aminoglycoside-Induced Experimental Nephrotoxicity in Rats: Biochemical and Histopathological Evidence

Authors: Balakumar Pitchai, Xiang Llan Ang, Sunil Prajapati, Varatharajan Rajavel, Sundram Karupiah, Mohd Baidi Bahari

Abstract:

The study examined the pretreatment and post-treatment effects of low-doses of fenofibrate and rosuvastatin in gentamicin-induced acute nephrotoxicity in rats. Gentamicin (100 mg/kg/day, i.p.) was administered to rats for 8 days. In the pretreatment protocol, low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) treatments were started a day before the administration of gentamicin and continued for 8 days. In the post-treatment protocol, rats administered gentamicin were treated with low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) for 6 days after the completion of 8 days protocol of gentamicin administration. Gentamicin-associated acute nephrotoxicity in rats was assessed in terms of biochemical analysis and renal histopathological studies. Gentamicin-administered rats showed marked renal functional changes as assessed in terms of a significant increase in serum creatinine and urea levels as compared to normal rats. The renal dysfunction noted in gentamicin administered rats was accompanied with elevated serum uric acid level as compared to normal rats while there was no significant change in lipid profile. Low-dose fenofibrate pretreatment in gentamicin-administered rats afforded a significant renal functional improvements and renoprotection while its post-treatment showed no significant renoprotection. On the other hand, pretreatment with low-dose rosuvastatin partially reduced gentamicin-induced increase in serum creatinine level, but its post-treatment did not afford renal functional improvements in gentamicin-administered rats. However, all pre and post-treatments with low-doses of fenofibrate or rosuvastatin significantly reduced the elevated serum uric acid concentration in gentamicin-administered rats. Renal histopathological analysis showed a discernible incidence of acute tubular necrosis in gentamicin-administered rats which were markedly reduced by low-dose fenofibrate or low-dose rosuvastatin pretreatments; but, not by their post-treatments. In conclusion, low-dose fenofibrate pretreatment considerably prevented gentamicin-induced acute tubular necrosis and renal functional abnormalities in rats while its post-treatment resulted in no significant renoprotective action. In spite of effective prevention of gentamicin-induced acute tubular necrosis, the pretreatment with low-dose rosuvastatin had only a partial and fractional protection on renal functional abnormalities. The post-treatment with low-dose rosuvastatin was ineffective in affording a renoprotection in gentamicin-administered rats.

Keywords: gentamicin-nephrotoxicity, low-dose fenofibrate, low-dose rosuvastatin, renoprotection

Procedia PDF Downloads 204
5540 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 119
5539 Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties

Authors: S. Badrinarayanan, R. Vimal, H. Sivaraman, P. Deepak, R. Vignesh Kumar, A. Ponshanmugakumar

Abstract:

In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope.

Keywords: banana fibres, epoxy resin, sodium bromate, flammability test, heat deflection

Procedia PDF Downloads 297
5538 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 137
5537 COVID-19 Pandemic and Disruptions in Nigeria’s Domestic Economic Activities: A Pre-post Empirical Investigation

Authors: Amaefule, Leonard Ifeanyi

Abstract:

The study evaluated the disruptions in Nigeria’s domestic economic activities occasioned by the COVID-19 pandemic: a pre and post-pandemic investigation approach. Domestic economic activities were measured with composite manufacturing purchasing managers index (PMI) and composite non-manufacturing PMI. Production and employment levels indices were proxies for composite manufacturing PMI, while business activities and employment level indices were proxies for non-manufacturing PMI. Data for these indices were sourced from monthly and quarterly publications of the Central Bank of Nigeria for periods covering fifteen (15) months before and 15 months after the outbreak of the virus in Nigeria. Test of equality of means was employed in establishing the significance of the difference of means between the pre and post-pandemic domestic economic activities. Results from the analysis indicated that a significant negative difference exists in each of the measures of domestic economic activities between the pre and post-pandemic periods. These findings, therefore, offer empirical evidence that the COVID-19 pandemic has disrupted domestic economic activities in Nigeria; thus, it exerts a negative influence on the measures of the nation’s domestic economic activities. The study thus recommended (among other things) that the Nigerian government should focus on policies that would enhance domestic production, employment and enhance business activities.

Keywords: COVID-19, domestic economic activities, composite manufacturing indices, composite non-manufacturing indices

Procedia PDF Downloads 178
5536 Improved Accuracy of Ratio Multiple Valuation

Authors: Julianto Agung Saputro, Jogiyanto Hartono

Abstract:

Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results.

Keywords: multiple, valuation, composite, accuracy

Procedia PDF Downloads 282
5535 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting

Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji

Abstract:

The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.

Keywords: composites, periwinkle shell, two-step casting, porosity

Procedia PDF Downloads 349
5534 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 217
5533 Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures

Authors: P. Karlsson, M. Åsberg, R. Eriksson, P. Krakhmalev, N. Strömberg

Abstract:

Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well.

Keywords: additive manufacturing, computed tomography, material characterization, lattice structures, robust lightweight design

Procedia PDF Downloads 164
5532 Protective Effect of L-Carnitine against Gentamicin-Induced Nephrotoxicity in Rats

Authors: Mohamed F. Ahmed, Mabruka S. Elashheb, Fatma M. Ben Rabha

Abstract:

This study aimed to determine the possible protective effects of L‐carnitine against gentamicin‐induced nephrotoxicity. Forty male albino rats were divided into 4 groups (10 rats each); Group 1: normal control, group 2: induced nephrotoxicity (gentamicin 50 mg/kg/day S.C; 8 days) , group 3: treated with L‐carnitine (40 mg/kg/d SC for 12 days) and group 4: treated with L‐carnitine 4 days before and for 8 days in concomitant with gentamicin. Gentamicin‐induced nephrotoxicity (group 2): caused significant increase in serum urea, creatinine, urinary N‐acetyl‐B‐D‐glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT), urinary total protein and kidney tissue malondialdehyde (MDA) with significant decrease in serum superoxide dismutase (SOD), serum catalase and creatinine clearance and marked tubular necrosis in the proximal convoluted tubules with interruption in the basement membrane around the necrotic tubule compared to the normal control group. L‐carnitine 4 days before and for 8 days in concomitant with gentamicin (group 4) offered marked decrease in serum urea, serum creatinine, urinary NAG, urinary GGT, urinary proteins and kidney tissue MDA, with marked increase in serum SOD, serum catalase and creatinine clearance with marked improvement in the tubular damage compared to gentamicin‐induced nephrotoxicity group. L‐carnitine administered for 12 days produced no change in the above-mentioned parameters as compared to the normal control group. In conclusion: L‐carnitine could reduce most of the biochemical parameters and also improve the histopathological features of the kidney associated with gentamicin-induced nephrotoxicity.

Keywords: gentamicin, nephrotoxicity, L‐carnitine, kidney disease

Procedia PDF Downloads 357
5531 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects

Authors: Ehsan Sadie

Abstract:

Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.

Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion

Procedia PDF Downloads 441
5530 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 679
5529 Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation

Authors: Hassan Zare, Mohammad Jahedi, Mohammad Reza Toroghinejad, Mahmoud Meratian, Marko Knezevic

Abstract:

In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes.

Keywords: powder metallurgy, ball mill attrition, ultrasonic, consolidation

Procedia PDF Downloads 495
5528 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 73
5527 Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber

Authors: Z. Okay, M. Kalkan Erdoğan, M. Şahin, M. Saçak

Abstract:

Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile.

Keywords: composite, conducting polymer, fiber, polyacrylonitrile

Procedia PDF Downloads 478
5526 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue

Authors: Onur Karaman, Ceren Karaman

Abstract:

In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.

Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel

Procedia PDF Downloads 297
5525 Transformable Lightweight Structures for Short-term Stay

Authors: Anna Daskalaki, Andreas Ashikalis

Abstract:

This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.

Keywords: lightweight structures, timber, transformable, tent

Procedia PDF Downloads 169
5524 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 445
5523 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 314
5522 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.

Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil

Procedia PDF Downloads 299
5521 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 156
5520 Multilayer System of Thermosetting Polymers and Specific Confining, Application to the Walls of the Hospital Unit

Authors: M. Bouzid, A. Djadi, C. Aribi, A. Irekti, B. Bezzazi, F. Halouene

Abstract:

The nature of materials structuring our health institutions promote the development of germs. The sustainability of nosocomial infections remains significant (12% and 15%). One of the major factors is the portland cement which is brittle and porous. As part of a national plan to fight nosocomial infections, led by the University Hospital of Blida, we opted for a composite coating, application by multilayer model, composed of epoxy-polyester resin as a binder and calcium carbonate as mineral fillers. The application of composite materials reinforce the wall coating of hospital units and eliminates the hospital infectious areas. The resistance to impact, chemicals, raising temperature and to a biologically active environment gives satisfactory results.

Keywords: nosocomial infection, microbial load, composite materials, portland cement

Procedia PDF Downloads 389
5519 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile

Authors: Monika Kamocka, Radoslaw Mania

Abstract:

The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.

Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method

Procedia PDF Downloads 193
5518 Modelling of Creep in a Thick-Walled Cylindrical Vessel Subjected to Internal Pressure

Authors: Tejeet Singh, Ishvneet Singh, Vinay Gupta

Abstract:

The present study focussed on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminium matrix reinforced with silicon-carbide in particulate form. The creep behaviour of the composite material has been described by the threshold stress based creep law. The value of stress exponent appearing in the creep law was selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stresses and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: creep, composite, cylindrical vessel, internal pressure

Procedia PDF Downloads 576
5517 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles

Procedia PDF Downloads 418
5516 The Role of the Elastic Foundation Having Nonlinear Stiffness Properties in the Vibration of Structures

Authors: E. Feulefack Songong, A. Zingoni

Abstract:

A vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Although vibrations can be linear or nonlinear depending on the basic components of the system, the interest is mostly pointed towards nonlinear vibrations. This is because most structures around us are to some extent nonlinear and also because we need more accurate values in an analysis. The goal of this research is the integration of nonlinearities in the development and validation of structural models and to ameliorate the resistance of structures when subjected to loads. Although there exist many types of nonlinearities, this thesis will mostly focus on the vibration of free and undamped systems incorporating nonlinearity due to stiffness. Nonlinear stiffness has been a concern to many engineers in general and Civil engineers in particular because it is an important factor that can bring a good modification and amelioration to the response of structures when subjected to loads. The analysis of systems will be done analytically and then numerically to validate the analytical results. We will first show the benefit and importance of stiffness nonlinearity when it is implemented in the structure. Secondly, We will show how its integration in the structure can improve not only the structure’s performance but also its response when subjected to loads. The results of this study will be valuable to practicing engineers as well as industry practitioners in developing better designs and tools for their structures and mechanical devices. They will also serve to engineers to design lighter and stronger structures and to give good predictions as for the behavior of structures when subjected to external loads.

Keywords: elastic foundation, nonlinear, plates, stiffness, structures, vibration

Procedia PDF Downloads 135
5515 A Brief Overview of Seven Churches in Van Province

Authors: Eylem Güzel, Soner Guler, Mustafa Gulen

Abstract:

Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective.

Keywords: earthquake, historical structures, Van province, church

Procedia PDF Downloads 545
5514 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 199