Search results for: reinforcement corrosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1311

Search results for: reinforcement corrosion

1311 Corrosion Monitoring Techniques Impact on Concrete Durability: A Review

Authors: Victor A. Okenyi, Kehinde A. Alawode

Abstract:

Corrosion of reinforcement in concrete structures remains a durability issue in structural engineering with the increasing cost of repair and maintenance. The mechanism and factors influencing reinforcement corrosion in concrete with various electrochemical monitoring techniques including non-destructive, destructive techniques and the roles of sensors have been reviewed with the aim of determining the monitoring technique that proved most effective in determining corrosion parameters and more practicable for the assessment of concrete durability. Electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) techniques showed great performance in evaluating corrosion kinetics and corrosion rate, respectively, while the gravimetric weight loss (GWL) technique provided accurate measurements. However, no single monitoring technique showed to be the ultimate technique, and this calls for more research work in the development of more dynamic monitoring tools capable of considering all possible corrosion factors in the corrosion monitoring process.

Keywords: corrosion, concrete structures, durability, non-destructive technique, sensor

Procedia PDF Downloads 143
1310 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 47
1309 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 100
1308 Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide

Authors: B. Oji, O. Olaniran

Abstract:

The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate.

Keywords: Al-Mg-Si alloy, AutoLab potentiostat, Cassava Peel Ash, CPA, hybrid composite, stir-cast method

Procedia PDF Downloads 99
1307 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: adhesion performance, lateral reinforcement, pull-out test, textile

Procedia PDF Downloads 334
1306 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 406
1305 Effect of Stirrup Corrosion on Concrete Confinement Strength

Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya

Abstract:

This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.

Keywords: bridge, column, concrete, corrosion, inspection, stirrup reinforcement

Procedia PDF Downloads 421
1304 Corrosion Characterization of Al6061, Quartz Metal Matrix Composites in Alkali Medium

Authors: Radha H. R., Krupakara P. V.

Abstract:

Metal matrix composites are attracting today's manufacturers of many automobile parts so that they lost longer and their properties can be tailored according to the requirement. In this paper an attempt has been made to study the corrosion characteristics of Aluminium 6061 / quartz metal matrix composites in alkali medium like sodium hydroxide solutions. Metal matrix composites are heterogeneous mixtures of a matrix and reinforcement. In this work the matrix selected is Aluminium 6061 alloy which is commercially available and the reinforcement selected is quartz particulates of 50-80 micron size which is available in plenty in and around Bangalore district, India. Composites containing Aluminium 6061 with 2, 4 and 6 weight percent of quartz are manufactured by liquid melt metallurgy technique using vortex method. Corrosion tests like static weight loss and open circuit potential tests are conducted in different concentrated solutions of sodium hydroxide. To compare the results the matrix Aluminium 6061 is also casted in the same way. Specimens for the test are prepared according to ASTM standards. In all the tests the metal matrix composites showed better corrosion resistance than matrix alloy.

Keywords: aluminium 6061, corrosion, quartz, vortex

Procedia PDF Downloads 382
1303 Study of Corrosion in Structures due to Chloride Infiltration

Authors: Sukrit Ghorai, Akku Aby Mathews

Abstract:

Corrosion in reinforcing steel is the leading cause for deterioration in concrete structures. It is an electrochemical process which leads to volumetric change in concrete and causes cracking, delamination and spalling. The objective of the study is to provide a rational method to estimate the probable chloride concentration at the reinforcement level for a known surface chloride concentration. The paper derives the formulation of design charts to aid engineers for quick calculation of the chloride concentration. Furthermore, the paper focuses on comparison of durability design against corrosion with American, European and Indian design standards.

Keywords: chloride infiltration, concrete, corrosion, design charts

Procedia PDF Downloads 379
1302 Investigation of the Inhibition Effect of 2,3-Diaminopyridine on Mild Steel Corrosion in Solution Simulating Water of Pores Concrete in Absence and Presence of Chloride Ions

Authors: Fatiha Benghanem, Mokhtar Berarma, Saida Keraghel, Ali Ourari

Abstract:

Corrosion is the result of the reaction between a material and its environment. Steel in concrete is protected from corrosion by a passive film promoted by concrete alkalinity. For the initiation of corrosion, this protective film must be destroyed and this can be mainly done in two ways: by the attack of chlorides on the steel or by carbonation of the cover concrete due the reaction with carbon dioxide, which causes reduction in the alkalinity of concrete. The literature reports several ways to decrease or to prevent reinforcement corrosion. Among them, the use of corrosion inhibitors has been an envisaged solution. Two approaches are generally used to evaluate the efficiency of inhibitors for concrete application; one uses simulated pore solution testing , and the other uses actual concrete or mortar specimens. Both methods are some times used in conjunction. The aim of this study is to investigate the use of 2,3-diaminopyridine as a corrosion inhibitors of steel in alkaline media which simulate the electrolyte in the concrete pores. The effectiveness of this compound as corrosion inhibitor was investigated by measuring the corrosion potentials, the polarization curves and the corrosion current densities of steel with and without chlorides. The study of corrosion inhibition by this compound led to the conclusion that he has low rates of inhibition in the absence of aggressive ions and high rates in their presence. This type of organic compounds are promoting for the protection of armatures in concrete.

Keywords: corrosion, inhibitors, mild steel, conjunction

Procedia PDF Downloads 407
1301 Mechanism of Cathodic Protection to Minimize Corrosion Caused by Chloride in Reinforcement Concrete

Authors: Mohamed A. Deyab, Omnia El-Shamy

Abstract:

The main objective of this case study is to integrate the advantages of cathodic protection technologies in order to lessen chloride-induced corrosion in reinforced concrete. This research employs potentiodynamic polarisation, impedance spectroscopy (EIS), and surface characteristics. The results showed how effectively the new cathodic control strategy is preventing corrosion of the concrete iron rods. Over time, the protective system becomes more reliable and effective. The potentials of the zinc electrode persist still more negative after 30 days, implying that the zinc electrode can maintain powerful electrocatalytic behavior for a long period of time. As per the electrochemical impedance spectroscopy (EIS), using the CP technique reduces the rate of corrosion of rebar iron in cementitious materials over time.

Keywords: cathodic protection, corrosion, reinforced concrete, chloride

Procedia PDF Downloads 50
1300 Influence of Graphene Content on Corrosion Behavior of Electrodeposited Zinc–Graphene Composite Coatings

Authors: Bin Yang, Xiaofang Chen, Guangxin Wang

Abstract:

Zinc coating as a sacrificial protection plays an important role in the traditional steel anticorrosion field. Adding second-phase reinforcement particles into zinc matrix is an interesting approach to further enhance its corrosion performance. In this paper, pure Zn and Zn–graphene composite coatings of different graphene contents were prepared by direct current electrodeposition on 304 stainless steel substrate. The coatings were characterized by XRD, SEM/EDS, and Raman spectroscopy. Tafel polarization and electrochemical impedance spectroscopic methods were used to study their corrosion behavior. Result obtained have shown that the concentration of grapheme oxide (GO) in zinc sulfate bath has an important effect on textured structure and surface morphology of Zn–graphene composite coatings. The coating prepared with 1.0g/L GO has shown the best corrosion resistance compared to other coatings prepared in this study.

Keywords: Zn-graphene coatings, electrodeposition, microstructure, corrosion behavior

Procedia PDF Downloads 233
1299 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions

Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani

Abstract:

Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.

Keywords: steel bar, shape memory alloy, FRP, corrosion

Procedia PDF Downloads 364
1298 Structural Properties of RC Beam with Progression of Corrosion Induced Delamination Cracking

Authors: Anupam Saxena, Achin Agrawal, Rishabh Shukla, S. Mandal

Abstract:

It is quite important that the properties of structural elements do not change significantly before and after cracking, and if they do, it adversely affects the structure. Corrosion in rebars causes cracking in concrete which can lead to the change in properties of beam. In the present study, two RC beams with same flexural strength but with different reinforcement arrangements are considered and modelling of cracks of RC beams has been done at different degrees of corrosion in the case of delamination using boundary conditions of Three Point Bending Test. Finite Element Analysis (FEA) has been done at different degree of corrosion to observe the variation of different parameters like modal frequency, Elasticity and Flexural strength in case of delamination. Also, the comparison between two different RC arrangements is made to conclude which one of them is more suitable.

Keywords: delamination, elasticity, FEA, flexural strength, modal frequency, RC beam

Procedia PDF Downloads 387
1297 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta Daniela Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials

Procedia PDF Downloads 298
1296 High-Temperature Corrosion of Weldment of Fe-2%Mn-0.5%Si Steel in N2/H2O/H2S-Mixed Gas

Authors: Sang Hwan Bak, Min Jung Kim, Dong Bok Lee

Abstract:

Fe-2%Mn-0.5%Si-0.2C steel was welded and corroded at 600, 700 and 800oC for 20 h in 1 atm of N2/H2S/H2O-mixed gas in order to characterize the high-temperature corrosion behavior of the welded joint. Corrosion proceeded fast and almost linearly. It increased with an increase in the corrosion temperature. H2S formed FeS owing to sulfur released from H2S. The scales were fragile and nonadherent.

Keywords: Fe-Mn-Si steel, corrosion, welding, sulfidation, H2S gas

Procedia PDF Downloads 377
1295 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour

Procedia PDF Downloads 99
1294 The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablous, Mofied M. Elnemry

Abstract:

The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content.

Keywords: proportion of carbon in the steel, corrosion rate, erosion, corrosion resistance in carbon-steel

Procedia PDF Downloads 560
1293 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process

Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu

Abstract:

Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.

Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite

Procedia PDF Downloads 40
1292 Effect of Soil Corrosion in Failures of Buried Gas Pipelines

Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur

Abstract:

In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.

Keywords: corrosion, pit depth, sensitivity analysis, exposure period

Procedia PDF Downloads 496
1291 Disadvantages and Drawbacks of Concrete Blocks and Fix Their Defects

Authors: Ehsan Sadie

Abstract:

Today, the cost of repair and maintenance of structures is very important and by studying the behavior of reinforced concrete structures Will become specified several factors such as : Design and calculation errors, lack of proper implementation of structural changes, the damage caused by the introduction of random loads, concrete corrosion and environmental conditions reduce durability of the structures . Meanwhile building codes alteration also cause changes in the assessment and review of the design and structure rather if necessary will be improved and strengthened in the future.

Keywords: concrete building , expandable cement, honeycombed surface , reinforcement corrosion

Procedia PDF Downloads 405
1290 Downhole Corrosion Inhibition Treatment for Water Supply Wells

Authors: Nayif Alrasheedi, Sultan Almutairi

Abstract:

Field-wide, a water supply wells’ downhole corrosion inhibition program is being applied to maintain downhole component integrity and keep the fluid corrosivity below 5 MPY. Batch treatment is currently used to inject the oil field chemical. This work is a case study consisting of analytical procedures used to optimize the frequency of the good corrosion inhibition treatments. During the study, a corrosion cell was fitted with a special three-electrode configuration for electrochemical measurements, electrochemical linear polarization, corrosion monitoring, and microbial analysis. This study revealed that the current practice is not able to mitigate material corrosion in the downhole system for more than three months.

Keywords: downhole corrosion inhibition, electrochemical measurements, electrochemical linear polarization, corrosion monitoring

Procedia PDF Downloads 139
1289 The Corrosion Resistance of the 32CrMoV13 Steel Nitriding

Authors: Okba Belahssen, Lazhar Torchane, Said Benramache, Abdelouahed Chala

Abstract:

This paper presents corrosion behavior of the plasma-nitrided 32CrMoV13 steel. Different kinds of samples were tested: non-treated, plasma nitrided samples. The structure of layers was determined by X-ray diffraction, while the morphology was observed by scanning electron microscopy (SEM). The corrosion behavior was evaluated by electrochemical techniques (potentiodynamic curves and electrochemical impedance spectroscopy). The corrosion tests were carried out in acid chloride solution (HCl 1M). Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localized corrosion through open porosity. The better corrosion protection was observed for nitrided sample.

Keywords: plasma-nitrided, 32CrMoV13 steel, corrosion, EIS

Procedia PDF Downloads 561
1288 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack

Authors: Rita Greco, Giuseppe Carlo Marano

Abstract:

Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.

Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment

Procedia PDF Downloads 291
1287 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems

Authors: A. Acidi, A. Abbaci

Abstract:

We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.

Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit

Procedia PDF Downloads 295
1286 On-Plot Piping Corrosion Analysis for Gas and Oil Separation Plants (GOSPs)

Authors: Sultan A. Al Shaqaq

Abstract:

Corrosion is a serious challenge for a piping system in our Gas and Oil Separation Plant (GOSP) that causes piping failures. Two GOSPs (Plant-A and Plant-B) observed chronic corrosion issue with an on-plot piping system that leads to having more piping replacement during the past years. Since it is almost impossible to avoid corrosion, it is becoming more obvious that managing the corrosion level may be the most economical resolution. Corrosion engineers are thus increasingly involved in approximating the cost of their answers to corrosion prevention, and assessing the useful life of the equipment. This case study covers the background of corrosion encountered in piping internally and externally in these two GOSPs. The collected piping replacement data from year of 2011 to 2014 was covered. These data showed the replicate corrosion levels in an on-plot piping system. Also, it is included the total piping replacement with drain lines system and other service lines in plants (Plant-A and Plant-B) at Saudi Aramco facility.

Keywords: gas and oil separation plant, on-plot piping, drain lines, Saudi Aramco

Procedia PDF Downloads 304
1285 Corrosion Monitoring of Weathering Steel in a Simulated Coastal-Industrial Environment

Authors: Thee Chowwanonthapunya, Junhua Dong, Wei Ke

Abstract:

The atmospheres in many cities along the coastal lines in the world have been rapidly changed to coastal-industrial atmosphere. Hence, it is vital to investigate the corrosion behavior of steel exposed to this kind of environment. In this present study, Electrochemical Impedance Spectrography (EIS) and film thickness measurements were applied to monitor the corrosion behavior of weathering steel covered with a thin layer of the electrolyte in a wet-dry cyclic condition, simulating a coastal-industrial environment at 25 oC and 60 % RH. The results indicate that in all cycles, the corrosion rate increases during the drying process due to an increase in anion concentration and an acceleration of oxygen diffusion enhanced by the effect of the thinning out of the electrolyte. During the wet-dry cyclic corrosion test, the long-term corrosion behavior of this steel depends on the periods of exposure. Corrosion process is first accelerated and then decelerated. The decelerating corrosion process is contributed to the formation of the protective rust, favored by the wet-dry cycle and the acid regeneration process during the rusting process.

Keywords: atmospheric corrosion, EIS, low alloy, rust

Procedia PDF Downloads 417
1284 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 186
1283 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 76
1282 Corrosion Resistance of Mild Steel Coated with Different Polyimides/h-Boron Nitride Composite Films

Authors: Tariku Nefo Duke

Abstract:

Herein, we synthesized three PIs/h-boron nitride composite films for corrosion resistance of mild steel material. The structures of these three polyimide/h-boron nitride composite films were confirmed using (FTIR, 1H NMR, 13C NMR, and 2D NMR) spectroscopy techniques. The synthesized PIs composite films have high mechanical properties, thermal stability, high glass-transition temperature (Tg), and insulating properties. It has been shown that the presence of electroactive TiO2, SiO2, and h-BN, in polymer coatings effectively inhibits corrosion. The h-BN displays an admirable anti-corrosion barrier for the 6F-OD and BT-OD films. PI/ h-BN composite films of 6F-OD exhibited better resistance to water vapor, high corrosion resistance, and positive corrosion voltage. Only four wt. percentage of h-BN in the composite is adequate.

Keywords: polyimide, corrosion resistance, electroactive, Tg

Procedia PDF Downloads 170