Search results for: bacterial cellulose
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1478

Search results for: bacterial cellulose

1028 Isolation and Characterization of Endophytic Bacteria Associated with Root-Nodules of Medicago sativa in Al-Ahasa Region

Authors: Ashraf Y. Z. Khalifa, Mohammed A. Almalki

Abstract:

Medicago sativa (Alfalfa) is an important forage crop legume worldwide including Saudia Arabia due to its high nutritive value. Soil bacteria exist in root or root-nodules of Medicago sativa in either symbiotic relationships or in associations. The aim of the present study was to isolate and characterize endophytic bacteria that live in association with non-nodulated roots of Medicago sativa growing in Al-Ahsaa region, Saudia Arabia. Several bacterial strains were isolated from sterilized roots of Medicago sativa. Strains were characterized using 16S rRNA gene sequences, phylogenetic relationships analysis, morphological and biochemical characteristics. The strains utilized 50% (10 out of 20) of the different chemical substrates contained in the API20E strip. In general, many strains had the ability to ferment/oxidise all the carbohydrate tested except for rhamnose and the polyol carbohydrate, inositol. Comparative sequence analysis of the 16S rDNA gene indicated that the strains were closely related to the genus Bacillus. Furthermore, the growth parameters of Vigna sinensis were enhanced upon single-inoculation of the isolated strains, compared to the uninoculated control plants. The results highlighted that the root-nodules of Medicago sativa harbor non-nodulating bacterial strains that could have significant agricultural applications.

Keywords: Medicago sativa, endophytic bacteria, Pisum sativum, Vigna sinensis

Procedia PDF Downloads 371
1027 Possible Protective Role of Angiotensin II Antagonist on Bacterial Endotoxin Induced Acute Lung Injury: Morphological Study on Adult Male Albino Rat

Authors: Mohamed Bakry Mohamed Ali, Mohamed Ehab El-Din Mustafa, Joseph Naiem Sabet Aziz, Sarah Mahmoud Ali Kaooh

Abstract:

Background: Acute lung injury (ALI) is one of the major challenges in intensive care medicine. The most common extrapulmonary cause of ALI is sepsis, accounting more than 30% of the cases in humans. Lipopolysaccharide (LPS) has gained wide acceptance as a clinically relevant model of ALI. Lipopolysaccharide is a glycoprotein forming the major constituent of bacterial endotoxin. Losartan is angiotensin II type 1 (AT1) receptor antagonists. It is widely used for management of hypertension. It was recently suggested that losartan protects against septic ALI. It would thereby prevent LPS-induced ALI. Aim of the work and design of the experiment: This work investigated the injurious effect of lipopolysaccharide (LPS) and ALI on adult male albino rat at 24 hours and 14 days of LPS administration and the possible protective role of losartan pretreatment. LPS has deteriorated animal survival and behavior. It increased lung weight and induced lung histological damage. These changes could be much reduced by the losartan pretreatment. Conclusion: Administration of losartan before LPS could largely reduce these LPS/ ALI induced short and long term alterations. It could be recommended that patients susceptible to developing ALI, as in ICU, should receive a protective dose of angitensin II type 1 (AT1) receptor blocker as losartan.

Keywords: acute lung injury (ALI), lipopolysaccharide (LPS), losartan

Procedia PDF Downloads 602
1026 Identification and Characterization of Antimicrobial Peptides Isolated from Entophytic Bacteria and Their Activity against Multidrug-Resistance Gram-Negative Bacteria in South Korea

Authors: Maryam Beiranvand

Abstract:

Multi-drug resistance in various microorganisms has increased globally in many healthcare facilities. Less effective antimicrobial activity of drug therapies for infection control becomes trouble. Since 1980, no new type of antimicrobial drug has been identified, even though combinations of antibiotic drugs have been discovered almost every decade. Between 1981 and 2006, over 70% of novel pharmaceuticals and chemical agents came from natural sources. Microorganisms have yielded almost 22,000 natural compounds. The identification of antimicrobial components from endophytes bacteria could help overcome the threat posed by multi-drug resistant strains. The project aims to analyze and identify antimicrobial peptides isolated from entophytic bacteria and their activity against multidrug-resistant Gram-negative bacteria in South Korea. Endophytic Paenibacillus polymyxa. 4G3 isolated from the plant, Gynura procumbery exhibited considerable antimicrobial activity against Methicillin-resistant Staphylococcus aureus, and Escherichia coli. The Rapid Annotations using Subsystems Technology showed that the total size of the draft genome was 5,739,603bp, containing 5178 genes with 45.8% G+C content. Genome annotation using antiSMASH version 6.0.0 was performed, which predicted the most common types of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS). In this study, diethyl aminoethyl cellulose (DEAEC) resin was used as the first step in purifying for unknown peptides, and then the target protein was identified using hydrophilic and hydrophobic solutions, optimal pH, and step-by-step tests for antimicrobial activity. This crude was subjected to C18 chromatography and elution with 0, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% methanol, respectively. Only the fraction eluted with 20% -60% methanol demonstrated good antimicrobial activity against MDR E. coli. The concentration of the active fragment was measured by the Brad-ford test, and Protein A280 - Thermo Fisher Scientific at the end by examining the SDS PAGE Resolving Gel, 10% Acrylamide and purity were confirmed. Our study showed that, based on the combined results of the analysis and purification. P polymyxa. 4G3 has a high potential exists for producing novel functions of polymyxin E and bacitracin against bacterial pathogens.

Keywords: endophytic bacteria, antimicrobial activity, antimicrobial peptide, whole genome sequencing analysis, multi -drug resistance gram negative bacteria

Procedia PDF Downloads 68
1025 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials

Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics

Abstract:

Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.

Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool

Procedia PDF Downloads 219
1024 Fermentation of Pretreated Herbaceous Cellulosic Wastes to Ethanol by Anaerobic Cellulolytic and Saccharolytic Thermophilic Clostridia

Authors: Lali Kutateladze, Tamar Urushadze, Tamar Dudauri, Besarion Metreveli, Nino Zakariashvili, Izolda Khokhashvili, Maya Jobava

Abstract:

Lignocellulosic waste streams from agriculture, paper and wood industry are renewable, plentiful and low-cost raw materials that can be used for large-scale production of liquid and gaseous biofuels. As opposed to prevailing multi-stage biotechnological processes developed for bioconversion of cellulosic substrates to ethanol where high-cost cellulase preparations are used, Consolidated Bioprocessing (CBP) offers to accomplish cellulose and xylan hydrolysis followed by fermentation of both C6 and C5 sugars to ethanol in a single-stage process. Syntrophic microbial consortium comprising of anaerobic, thermophilic, cellulolytic, and saccharolytic bacteria in the genus Clostridia with improved ethanol productivity and high tolerance to fermentation end-products had been proposed for achieving CBP. 65 new strains of anaerobic thermophilic cellulolytic and saccharolytic Clostridia were isolated from different wetlands and hot springs in Georgia. Using new isolates, fermentation of mechanically pretreated wheat straw and corn stalks was done under oxygen-free nitrogen environment in thermophilic conditions (T=550C) and pH 7.1. Process duration was 120 hours. Liquid and gaseous products of fermentation were analyzed on a daily basis using Perkin-Elmer gas chromatographs with flame ionization and thermal detectors. Residual cellulose, xylan, xylose, and glucose were determined using standard methods. Cellulolytic and saccharolytic bacteria strains degraded mechanically pretreated herbaceous cellulosic wastes and fermented glucose and xylose to ethanol, acetic acid and gaseous products like hydrogen and CO2. Specifically, maximum yield of ethanol was reached at 96 h of fermentation and varied between 2.9 – 3.2 g/ 10 g of substrate. The content of acetic acid didn’t exceed 0.35 g/l. Other volatile fatty acids were detected in trace quantities.

Keywords: anaerobic bacteria, cellulosic wastes, Clostridia sp, ethanol

Procedia PDF Downloads 286
1023 Detection of Brackish Water Biological Fingerprints in Potable Water

Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh

Abstract:

The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.

Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance

Procedia PDF Downloads 113
1022 Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals.

Keywords: Bacillus safensis LCX, high valued chemicals, lignocellulosic enzymes, solid state fermentation

Procedia PDF Downloads 291
1021 Rechargable N-Halamine Nanoparticles for Antibacterial and Antifouling Applications

Authors: Michal Natan, Ori Gutman, Shlomo Margel, Ehud Banin

Abstract:

Biofilm formation is a serious problem in medical and industrial settings due to the increased resistance of these communities to killing compared to free-living bacteria. This has prompted the search for agents that can inhibit both bacterial growth and biofilm formation. In this study, N-halamine rechargeable nanoparticles (NPs) were synthesized by co-polymerization of the monomer methacryl amide and the cross-linker monomer N,N-methylene bisacryl amide, and were subsequently loaded with Cl+, using bleach. The chlorinated NPs exhibited remarkable stability to organic reagents. The antibacterial mechanism of the P(MAA-MBAA)-Cl NPs involved generation of reactive oxygen species (ROS) only upon exposure to organic media, but not upon incubation in water, suggesting a specific activation. Moreover, a unique interaction of the P(MAA-MBAA)-Cl NPs with Staphylococcus aureus bacteria but not with human cells was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. Finally, in collaboration with Netafim Ltd. irrigation drippers containing the P(MAA-MBAA)-Cl were incubated in the field and were shown to prevent fouling on them for 5 months as opposed to the control drippers that exhibited substantial fouling. Further, the NPs offer recharging to the surface, thus providing long-lasting protection that does not exist in the products available today. Taken together, the results demonstrate the great potential of implementing the charged NPs in devices and surfaces to prevent bacterial growth.

Keywords: bacteria, biofilm, fouling, nanoparticles

Procedia PDF Downloads 192
1020 Physiochemical and Antibacterial Assessment of Iranian Propolis Gathering in Qazvin Province

Authors: Nematollah Gheibi, Nader Divan Khosroshahi, Mahdi Mohammadi Ghanbarlou

Abstract:

Introduction: Nowadays, the phenomenon of bacterial resistance is one of the most important challenge of the health community in the world. Propolis is most important production of bee colonies that collected from of various plants. So far, a lot of investigations carried out about its antibacterial effects. Material and methods: Thirty gram of propolis prepared as ethanolic extract and after different process of purification, 7.5 gr of its pure form were obtained. Propolis compounds identification was performed by TLC and VLC methods. The HPLC spectrum obtaining from propolis ethanolic extract was compared with some purified standard phenolic and flavonoid substances. Antibacterial effects of ethanol extract of purified propolis were evaluated on two strains of Staphylococcus aureus and Pseudomonas aeruginosa and their MIC was determined by the microdillution assay. Results: Ethanolic propolis extraction analyzed by TLC were resulted to confirm several phenolic and flavonoid compounds in this extract and some of the confirmed by HPLC technique. Minimum inhibitory concentration (MIC) for standard Staphylococcus aureus (ATCC25923) and Pseudomonas aeruginosa (ATCC27853) strains were obtained 2.5 mg/ml and 50 mg/ml respectively. Conclusion: Bee Propolis is a mix organic compound that has a lot of beneficial effects such as anti-bacterial that emphasized in this investigation. It is proposed as a rich source of natural phenolic and flavonoids compounds in designing of new biological resources for hygienic and medical applications.

Keywords: propolis, Staphylococcus aureus, Pseudomonas aeruginosa, antibacterial

Procedia PDF Downloads 299
1019 NFC Kenaf Core Graphene Paper: In-situ Method Application

Authors: M. A. Izzati, R. Rosazley, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. Jani

Abstract:

Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper.

Keywords: NFC, kenaf core, graphene, in-situ method

Procedia PDF Downloads 389
1018 Characteristics of Acute Bacterial Prostatitis in Elderly Patients Attended in the Emergency Department

Authors: Carles Ferré, Ferran Llopis, Javier Jacob, Jordi Giol, Xavier Palom, Ignasi Bardés

Abstract:

Objective: To analyze the characteristics of acute bacterial prostatitis (ABP) in elderly patients attended in the emergency department (ED). Methods: Observational and cohort study with prospective follow-up including patients with ABP presenting to the ED from January-December 2012. Data were collected for demographic variables, comorbidities, clinical and microbiological findings, treatment, outcome, and reconsultation at 30 days follow up. Findings were compared between patients ≥ 75 years (study group) and < 75 years (control group). Results: During the study period 241 episodes of ABP were included for analysis. Mean age was 62,9 ± 16 years, and 64 (26.5%) were ≥ 75 years old. A history of prostate adenoma was reported in 54 cases (22,4%), diabetes mellitus in 47 patients (19,5%) and prior manipulation of the lower urinary tract in 40 (17%). Mean symptoms duration was 3.38 ± 4.04 days, voiding symptoms were present in 176 cases (73%) and fever in 154 (64%). From 216 urine cultures, 128 were positive (59%) and 24 (17,6%) out of 136 blood cultures. Escherichia coli was the main pathogen in 58.6% of urine cultures and 64% of blood cultures (with resistant strains to fluoroquinolones in 27,7%, cotrimoxazole in 22,9% and amoxicillin/clavulanic in 27.7% of cases). Seventy patients (29%) were admitted to the hospital, and 3 died. At 30-day follow-up, 29 patients (12%) returned to the ED. In the bivariate analysis previous manipulation of the urinary tract, history of cancer, previous antibiotic treatment, resistant E. coli strains to amoxicillin-clavulanate and ciprofloxacin and extended spectrum beta-lactamase (ESBL) producers, renal impairment, and admission to the hospital were significantly more frequent (p < 0.05) among patients ≥ 75 years compared to those younger than 75 years. Conclusions: Ciprofloxacin and amoxicillin-clavulanate appear not to be good options for the empiric treatment of ABP for patients ≥ 75 years given the drug-resistance pattern in our series, and the proportion of ESBL-producing strains of E. coli should be taken into account. Awaiting bacteria identification and antibiogram from urine and/or blood cultures, treatment on an inpatient basis should be considered in older patients with ABP.

Keywords: acute bacterial prostatitits, antibiotic resistance, elderly patients, emergency

Procedia PDF Downloads 376
1017 A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye

Authors: Nurudeen Ayeni, Kasali Bello, Ovi Abayeh

Abstract:

Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed.

Keywords: cotton fabric, reactive dye, dyeing, resination

Procedia PDF Downloads 401
1016 Marker Assisted Selection of Rice Genotypes for Xa5 and Xa13 Bacterial Leaf Blight Resistance Genes

Authors: P. Sindhumole, K. Soumya, R. Renjimol

Abstract:

Rice (Oryza sativa L.) is the major staple food crop over the world. It is prone to a number of biotic and abiotic stresses, out of which Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is the most rampant. Management of this disease through chemicals or any other means is very difficult. The best way to control BLB is by the development of Host Plant Resistance. BLB resistance is not an activity of a single gene but it involves a cluster of more than thirty genes reported. Among these, Xa5 and Xa13 genes are two important ones, which can be diagnosed through marker assisted selection using closely linked molecular markers. During 2014, the first phase of field screening using forty traditional rice genotypes was carried out and twenty resistant symptomless genotypes were identified. Molecular characterisation of these genotypes using RM 122 SSR marker revealed the presence of Xa5 gene in thirteen genotypes. Forty-two traditional rice genotypes were used for the second phase of field screening for BLB resistance. Among these, sixteen resistant genotypes were identified. These genotypes, along with two susceptible check genotypes, were subjected to marker assisted selection for Xa13 gene, using the linked STS marker RG-136. During this process, presence of Xa13 gene could be detected in ten resistant genotypes. In future, these selected genotypes can be directly utilised as donors in Marker assisted breeding programmes for BLB resistance in rice.

Keywords: oryza sativa, SSR, STS, marker, disease, breeding

Procedia PDF Downloads 390
1015 Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals

Authors: C. C. Lin, S. C. Kan, C. W. Yeh, C. I Chen, C. J. Shieh, Y. C. Liu

Abstract:

In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.

Keywords: lipid-deprived residuals of microalgae, cellulosome, cellulose, reducing sugars, kinetics

Procedia PDF Downloads 398
1014 Cocoa Stimulates the Production Bioactive Components of Lactobacillus Casei and Competitively Excludes Foodborne Pathogens

Authors: Mengfei Peng, Serajus Salaheen, Debabrata Biswas

Abstract:

Lactobacillus casei found in the human intestine and mouth is commonly applied for dairy production. Recently, it was found that some byproducts produced by Lactobacillus exhibited antimicrobial activities against multiple bacteria. Meanwhile, introduction of prebiotic-like foods (e.g. cocoa) or probiotics or both of them as food supplements in human diets as well as in farm animal feeds is believed to be an effective ways in control/reduce the colonization of foodborne bacterial pathogens infection in the gut environment. We hypothesized that cocoa may stimulate the production antimicrobial components of Lactobacillus casei and may potentially inhibit/reduce the colonization and infection of foodborne bacterial pathogens in the gut. Mixed culture of L. casei (LC) with enterohemorrhagic E. coli EDL933 (EHEC), Salmonella Typhimurium LT2 (ST), or Listeria monocytogenes LM2 (LM) showed that LC could competitively exclude (100%) them within 72 h. Further, investigation of cell-free culture supernatant (CFCS) revealed that the antimicrobial effects of LC came from CFCS. CFCS of LC eliminated (100%) EHEC, ST, and LM within 72 h, and 2 h CFCS treatment increased the hydrophobicity of EHEC (5.10 folds), ST (8.48 folds), and LM (2.03 folds). In addition, LC cells exhibited more inhibitive effects than CFCS on cell adhesive and invasive activities of EHEC (52.14% & 90.45%), ST (66.89% & 93.83%), and LM (61.10% & 83.40%). Two clusters of poly-peptides in CFCS were identified by SDS-PAGE, the molecular weights of which are ≈5 KD and 40-45 KD. LC CFCS with overnight growth in the presence of 3% strengthened all of the antimicrobial activities (growth inhibition, outer membrane disruption, and cell infective ability reduction). Liquid chromatography/Mass spectrometry analysis detected 5 unique components in class of flavonoids in LC CFCS with overnight 3% cocoa supplement. Furthermore, qPCR results showed that CFCSs up-regulated the expression level of genes responsible for flagellin synthesis and motility, but down-regulated genes for specific binding and invasion-associated proteins synthesis. The stimulatory effects of cocoa in producing bioactive components of probiotics may aid prevention of foodborne illness caused by major foodborne enteric bacterial pathogens.

Keywords: foodborne pathogens, probiotics, prebiotics, pathogen exclusion

Procedia PDF Downloads 425
1013 A Fast and Cost-Effective Method to Monitor Microplastics in Compost and Soiduration of Enterococcus Faecalis Penetration in Environmentally Exposed Root Canals Obturated With Lateral Condensation Technique

Authors: N. Thawornwisit, P. Pradoo, S. Nuypree, L. Jarukasetrporn, S. Jitpukdeebodintra

Abstract:

Objective: The aim of this study was to evaluate the duration of the Enterococcus faecalis (E. faecalis) penetration into the gap between root canal wall and filling material at a 3 to 6 mm distance from the cementoenamel junction (CEJ) in the dislodged temporary filling, in vitro. Material and methods: Thirty-four single root canal mandibular premolars were divided into two experimental groups (N = 15) and one negative control (N = 4). Root canals were prepared and obturated with gutta-percha using lateral condensation technique, X-ray checked, and sterilized. Leakages were set up using the modified bacterial leakage model, and E. faecalis was used as a microbial marker. Leakages were evaluated at 3 and 7 days by culturing gutta-percha and dentine drilled from a 3-6 mm distance from CEJ. Broth turbidity was recorded and compared. Result: All four negative control and the 3-day experimental group showed no broth turbidity. For the 7-day experimental group, there was 33.3% leakage. Conclusion: Penetration of E. faecalis into the gap between root canal wall and filling material at a 3 to 6 mm distance from CEJ in the dislodged temporary filling were not found at three days. However, at seven days of exposure, bacteria could penetrate into the interface of the root canal and filling materials.

Keywords: coronal leakage, bacterial leakage model, enterococcus faecalis

Procedia PDF Downloads 88
1012 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 179
1011 From Edible Products to Disinfecting Currency Notes

Authors: Aniruddha Hore, Saptarshi Mitra, Sandip Ghosh, Sujoy Bose, Avijit Ghosh

Abstract:

The Indian rupee is the official currency of India. With time, science and technology got advanced, and our society is slowly making its way to a cashless mode of transaction. But as India is still a developing country, a large part of our society still depends on transaction through cash. During times of pandemics, we came to understand that everything that we touch is not safe from microbial contamination. The Indian currency is also not an exception. The Indian currency is the modern-day medium of harmful bacterial as well as other microbial contaminations resulting in diseases in human bodies. Therefore, the need came to make the currency disinfectant to give our people a healthier lifestyle. The main focus of the study is to develop a solution that, when applied to the currency notes, will kill the persisting bacteria or microbes present in the notes. So various natural edible products were used in order to prepare the solution, which is highly effective against the presence of harmful bacteria such as E. coli and S. aureus. The antibacterial activity of these natural ingredients is not unknown to us, so extracts from those products were mixed together to form a solution which was made the Indian currency notes antibacterial for 20min approx. The solution was creating a layer on the surface of currency notes, therefore, making it antibacterial for a given duration of time, i.e., no bacterial growth was seen during the time period of 20 minutes, therefore, making it safe for the usage of human hands.

Keywords: Indian currency, antibacterial property of Indian currency, surface coating, currency disinfectant

Procedia PDF Downloads 121
1010 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells

Authors: Fadilah Aleanizy

Abstract:

Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.

Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli

Procedia PDF Downloads 404
1009 Design of Liquid Crystal Based Interface to Study the Interaction of Gram Negative Bacterial Endotoxin with Milk Protein Lactoferrin

Authors: Dibyendu Das, Santanu Kumar Pal

Abstract:

Milk protein lactoferrin (Lf) exhibits potent antibacterial activity due to its interaction with Gram-negative bacterial cell membrane component, lipopolysaccharide (LPS). This paper represents fabrication of new Liquid crystals (LCs) based biosensors to explore the interaction between Lf and LPS. LPS self-assembled at aqueous/LCs interface and orients interfacial nematic 4-cyano-4’- pentylbiphenyl (5CB) LCs in a homeotropic fashion (exhibiting dark optical image under polarized optical microscope). Interestingly, on the exposure of Lf on LPS decorated aqueous/LCs interface, an optical image of LCs changed from dark to bright indicating an ordering alteration of interfacial LCs from homeotropic to tilted/planar state. The ordering transition reflects strong binding between Lf and interfacial LPS that, in turn, perturbs the orientation of LCs. With the help of epifluorescence microscopy, we further affirmed the interfacial LPS-Lf binding event by imaging the presence of FITC tagged Lf at the LPS laden aqueous/LCs interface. Finally, we have investigated the conformational behavior of Lf in solution as well as in the presence of LPS using Circular Dichroism (CD) spectroscopy and further reconfirmed with Vibrational Circular Dichroism (VCD) spectroscopy where we found that Lf undergoes alpha-helix to random coil-like structure in the presence of LPS. As a whole the entire results described in this paper establish a robust approach to envisage the interaction between LPS and Lf through the ordering transitions of LCs at aqueous/LCs interface.

Keywords: endotoxin, interface, lactoferrin, lipopolysaccharide

Procedia PDF Downloads 261
1008 An Investigation of How Salad Rocket May Provide Its Own Defence Against Spoilage Bacteria

Authors: Huda Aldossari

Abstract:

Members of the Brassicaceae family, such as rocket species, have high concentrations of glucosinolates (GLSs). GSLs and isothiocyanates (ITCs), the product of GLSs hydrolysis, are the most influential compounds that affect flavour in rocket species. Aside from their contribution to the flavour, GSLs and ITCs are of particular interest due to their potential ability to inhibit the growth of human pathogenic bacteria such as E. coli O157. Quantitative and qualitative analysis of glucosinolate compounds in rocket extracts was obtained by Liquid Chromatography-Mass Spectrometry (LC–MS).Each individual component of non-volatile GLSs and ITCs was isolated by High-Performance Liquid Chromatography (HPLC) fractionation. The identity and purity of each fraction were confirmed using Ultra High-Performance Liquid Chromatography (UPLC). The separation of glucosinolates in the complex rocket extractions was performed by optimizing a HPLC fractionation method through changing the mobile phase composition, solvent gradient, and the flow rate. As a result, six glucosinolates compounds (Glucosativin, 4-Methoxyglucobrassicin, Glucotropaeolin GTP, Glucoiberin GIB, Diglucothiobenin, and Sinigrin) have been isolated, identified and quantified in the complex samples. This step aims to evaluate the antibacterial activity of glucosinolates and their enzymatic hydrolysis against bacterial growth of E.coli k12. Therefore, fractions from this study will be used to determine the most active compounds by investigating the efficacy of each component of GLSs and ITCs at inhibiting bacterial growth.

Keywords: rocket, glucosinolates, E.coli k12., HPLC fractionatio

Procedia PDF Downloads 93
1007 Bacteriological Culture Methods and its Uses in Clinical Pathology

Authors: Prachi Choudhary, Jai Gopal Sharma

Abstract:

Microbial cultures determine the type of organism, its abundance in the tested sample, or both. It is one of the primary diagnostic methods of microbiology. It is used to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. Different bacteria produce colonies that may be very distinct from the bacterial species that produced them. To culture any pathogen or microorganism, we should first know about the types of media used in microbiology for culturing. Sometimes sub culturing is also done in various microorganisms if some mixed growth is seen in culture. Nearly 3 types of culture media based on consistency – solid, semi-solid, and liquid (broth) media; are further explained in the report. Then, The Five I's approach is a method for locating, growing, observing, and characterizing microorganisms, including inoculation and incubation. Isolation, inspection, and identification. For identification of bacteria, we have to culture the sample like urine, sputum, blood, etc., on suitable media; there are different methods of culturing the bacteria or microbe like pour plate method, streak plate method, swabbing by needle, pipetting, inoculation by loop, spreading by spreader, etc. After this, we see the bacterial growth after incubation of 24 hours, then according to the growth of bacteria antibiotics susceptibility test is conducted; this is done for sensitive antibiotics or resistance to that bacteria, and also for knowing the name of bacteria. Various methods like the dilution method, disk diffusion method, E test, etc., do antibiotics susceptibility tests. After that, various medicines are provided to the patients according to antibiotic sensitivity and resistance.

Keywords: inoculation, incubation, isolation, antibiotics suspectibility test, characterizing

Procedia PDF Downloads 78
1006 Effect of Grafting and Rain Shelter Technologies on Performance of Tomato (Lycopersicum esculentum Mill.)

Authors: Evy Latifah, Eli Korlina, Hanik Anggraeni, Kuntoro Boga, Joko Mariyono

Abstract:

During the rainy season, the tomato plants are vulnerable to various diseases. A disease that attacks the leaves of tomato plants (foliar diseases) such as late blight (Phytophtora infestans) and spotting bacteria (bacterial spot / Xanthomonas sp.) In addition, there is a disease that attacks the roots such as fusarium and bacterial wilt. If not immediately anticipated, it will decrease the quality and quantity of crop yields. In fact, it can lead to crop failure. The aim of this research is to know the production of tomato grafting by using Timoty and CLN 3024 tomatoes at rain shelter during rainy season in lowland. Data were analyzed using analysis of variance and tested further by Least Significant Difference (LSD) level of 5 %. The parameters measured were plant height (cm), stem diameter (cm), number of fruit space, canopy extended, number of branches, number of productive branches, and the number of stem segments. The results show at the beginning of growth until the end of the treatment without grafting with relative rain shelter displays the highest plant height. This was followed by extensive crop canopy. For tomato grafting and non-grafting using rain shelter able to produce the number of branches and number of productive branches at most. While at the end of the growth in the number of productive branches generated as much. Highest production of tomatoes produced by tomato dig rafting to use the shelter.

Keywords: field trail, wet and dry season, production, diseases, rain shelter

Procedia PDF Downloads 221
1005 Molecular Implication of Interaction of Human Enteric Pathogens with Phylloplane of Tomato

Authors: Shilpi, Indu Gaur, Neha Bhadauria, Susmita Goswami, Prabir K. Paul

Abstract:

Cultivation and consumption of organically grown fruits and vegetables have increased by several folds. However, the presence of Human Enteric Pathogens on the surface of organically grown vegetables causing Gastro-intestinal diseases, are most likely due to contaminated water and fecal matter of farm animals. Human Enteric Pathogens are adapted to colonize the human gut, and also colonize plant surface. Microbes on plant surface communicate with each other to establish quorum sensing. The cross talk study is important because the enteric pathogens on phylloplane have been reported to mask the beneficial resident bacteria of plant. In the present study, HEPs and bacterial colonizers were identified using 16s rRNA sequencing. Microbial colonization patterns after interaction between Human Enteric Pathogens and natural bacterial residents on tomato phylloplane was studied. Tomato plants raised under aseptic conditions were inoculated with a mixture of Serratia fonticola and Klebsiella pneumoniae. The molecules involved in cross-talk between Human Enteric Pathogens and regular bacterial colonizers were isolated and identified using molecular techniques and HPLC. The colonization pattern was studied by leaf imprint method after 48 hours of incubation. The associated protein-protein interaction in the host cytoplasm was studied by use of crosslinkers. From treated leaves the crosstalk molecules and interaction proteins were separated on 1D SDS-PAGE and analyzed by MALDI-TOF-TOF analysis. The study is critical in understanding the molecular aspects of HEP’s adaption to phylloplane. The study revealed human enteric pathogens aggressively interact among themselves and resident bacteria. HEPs induced establishment of a signaling cascade through protein-protein interaction in the host cytoplasm. The study revealed that the adaptation of Human Enteric Pathogens on phylloplane of Solanum lycopersicum involves the establishment of complex molecular interaction between the microbe and the host including microbe-microbe interaction leading to an establishment of quorum sensing. The outcome will help in minimizing the HEP load on fresh farm produce, thereby curtailing incidences of food-borne diseases.

Keywords: crosslinkers, human enteric pathogens (HEPs), phylloplane, quorum sensing

Procedia PDF Downloads 272
1004 Assessment of Escherichia coli along Nakibiso Stream in Mbale Municipality, Uganda

Authors: Abdul Walusansa

Abstract:

The aim of this study was to assess the level of microbial pollution along Nakibiso stream. The study was carried out in polluted waters of Nakibiso stream, originating from Mbale municipality and running through ADRA Estates to Namatala Wetlands in Eastern Uganda. Four sites along the stream were selected basing on the activities of their vicinity. A total of 120 samples were collected in sterile bottles from the four sampling locations of the stream during the wet and dry seasons of the year 2011. The samples were taken to the National water and Sewerage Cooperation Laboratory for Analysis. Membrane filter technique was used to test for Erischerichia coli. Nitrogen, Phosphorus, pH, dissolved oxygen, electrical conductivity, total suspended solids, turbidity and temperature were also measured. Results for Nitrogen and Phosphorus for sites; 1, 2, 3 and 4 were 1.8, 8.8, 7.7 and 13.8 NH4-N mg/L; and 1.8, 2.1, 1.8 and 2.3 PO4-P mg/L respectively. Basing on these results, it was estimated that farmers use 115 and 24 Kg/acre of Nitrogen and Phosphorus respectively per month. Taking results for Nitrogen, the same amount of Nutrients in artificial fertilizers would cost $ 88. This shows that reuse of wastewater has a potential in terms of nutrients. The results for E. coli for sites 1, 2, 3 and 4 were 1.1 X 107, 9.1 X 105, 7.4 X 105, and 3.4 X 105 respectively. E. coli hence decreased downstream with statistically significant variations between sites 1 and 4. Site 1 had the highest mean E.coli counts. The bacterial contamination was significantly higher during the dry season when more water was needed for irrigation. Although the water had the potential for reuse in farming, bacterial contamination during both seasons was higher than 103 FC/100ml recommended by WHO for unrestricted Agriculture.

Keywords: E. coli, nitrogen, phosphorus, water reuse, waste water

Procedia PDF Downloads 241
1003 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety

Authors: Boce Zhang

Abstract:

Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.

Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology

Procedia PDF Downloads 355
1002 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline

Procedia PDF Downloads 197
1001 Efficacy of Carvacrol as an Antimicrobial Wash Treatment for Reducing Both Campylobacter jejuni and Aerobic Bacterial Counts on Chicken Skin

Authors: Sandip Shrestha, Ann M. Donoghue, Komala Arsi, Basanta R. Wagle, Abhinav Upadhyay, Dan J. Donoghue

Abstract:

Campylobacter, one of the major cause of foodborne illness worldwide, is commonly present in the intestinal tract of poultry. Many strategies are currently being investigated to reduce Campylobacter counts on commercial poultry during processing with limited success. This study investigated the efficacy of the generally recognized as safe compound, carvacrol (CR), a component of wild oregano oil as a wash treatment for reducing C. jejuni and aerobic bacteria on chicken skin. A total of two trials were conducted, and in each trial, a total of 75 skin samples (4cm × 4cm each) were randomly allocated into 5 treatment groups (0%, 0.25%, 0.5%, 1% and 2% CR). Skin samples were inoculated with a cocktail of four wild strains of C. jejuni (~ 8 log10 CFU/skin). After 30 min of attachment, inoculated skin samples were dipped in the respective treatment solution for 1 min, allowed to drip dry for 2 min and processed at 0, 8, 24 h post treatment for enumeration of C. jejuni and aerobic bacterial counts (n=5/treatment/time point). The data were analyzed by ANOVA using PROC GLM procedure of SAS 9.3. All the tested doses of CR suspension consistently reduced C. jejuni counts across all time points. The 2% CR wash was the most effective treatment and reduced C. jejuni counts by ~4 log₁₀ CFU/sample (P < 0.05). Aerobic counts were reduced for the 0.5% CR dose at 0 and 24h in Trial 1 and at 0, 8 and 24h in Trial 2. The 1 and 2% CR doses consistently reduced aerobic counts in both trials up to 2 log₁₀ CFU/skin.

Keywords: Campylobacter jejuni, carvcrol, chicken skin, postharvest

Procedia PDF Downloads 174
1000 Preservation of Traditional Algerian Sausage Against Microbial Activity by the Garlic (Allium Sativum L.)

Authors: Abed Hannane, Rouag Noureddine

Abstract:

The present study aims to evaluate the association of fresh garlic (Allium sativum L.) and storage at 4°C in preserving the microbiological, nutritional, and sanitary quality of Merguez-type sausages prepared and sold locally from meat offal. The analysis focused on the evaluation of the microbiological quality of fifteen samples randomly taken from several butcheries in the wilaya of BBA, eastern Algeria. The bacteriological analysis revealed the presence of 6.88.10⁵ CFU/g of total aerobic bacteria, 5.39.10⁵ CFU/g of total coliforms, 2.23.10⁵ CFU/g of fecal coliforms, 2.43.103 CFU/g of Escherichia coli and 1.8.10⁵ CFU/g of coagulase-positive staphylococci, values higher than Algerian standards. The addition of fresh garlic as an antibacterial preservative at concentrations of 0.06, 0.12, 0.18, and 0.24 g/g to ground beef samples and stored in the refrigerator at 4°C for 15 days. The addition of garlic to Merguez made it possible to significantly reduce the presence of different bacterial groups during their refrigerated storage, compared to untreated meat, bringing it below the standards defined in the matter. Thus, the use of garlic as a food additive at a concentration of 0.12 g/g was sufficient to obtain levels according to Algerian standards equal to 1.8.10⁴ CFU/g of total aerobic bacteria, 9.48.10³ CFU/ g of total coliforms, 3.68.10³ UFC/g fecal coliforms, 4.56.10² UFC/g of E.coli 2.39.10⁴ UFC/g of coagulase-positive staphylococci. It is clear that thanks to the addition of garlic to Merguez, the sanitary quality has been improved by reducing the aerobic bacterial load and increasing the shelf life at 4°C.

Keywords: antimicrobial effect, garlic, sausage, storage

Procedia PDF Downloads 91
999 Changes in Skin Microbiome Diversity According to the Age of Xian Women

Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An

Abstract:

Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.

Keywords: next generation sequencing, age, Xian, skin microbiome

Procedia PDF Downloads 148