Search results for: water sustainable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12271

Search results for: water sustainable

7711 Geographical Information System and Multi-Criteria Based Approach to Locate Suitable Sites for Industries to Minimize Agriculture Land Use Changes in Bangladesh

Authors: Nazia Muhsin, Tofael Ahamed, Ryozo Noguchi, Tomohiro Takigawa

Abstract:

One of the most challenging issues to achieve sustainable development on food security is land use changes. The crisis of lands for agricultural production mainly arises from the unplanned transformation of agricultural lands to infrastructure development i.e. urbanization and industrialization. Land use without sustainability assessment could have impact on the food security and environmental protections. Bangladesh, as the densely populated country with limited arable lands is now facing challenges to meet sustainable food security. Agricultural lands are using for economic growth by establishing industries. The industries are spreading from urban areas to the suburban areas and using the agricultural lands. To minimize the agricultural land losses for unplanned industrialization, compact economic zones should be find out in a scientific approach. Therefore, the purpose of the study was to find out suitable sites for industrial growth by land suitability analysis (LSA) by using Geographical Information System (GIS) and multi-criteria analysis (MCA). The goal of the study was to emphases both agricultural lands and industries for sustainable development in land use. The study also attempted to analysis the agricultural land use changes in a suburban area by statistical data of agricultural lands and primary data of the existing industries of the study place. The criteria were selected as proximity to major roads, and proximity to local roads, distant to rivers, waterbodies, settlements, flood-flow zones, agricultural lands for the LSA. The spatial dataset for the criteria were collected from the respective departments of Bangladesh. In addition, the elevation spatial dataset were used from the SRTM (Shuttle Radar Topography Mission) data source. The criteria were further analyzed with factors and constraints in ArcGIS®. Expert’s opinion were applied for weighting the criteria according to the analytical hierarchy process (AHP), a multi-criteria technique. The decision rule was set by using ‘weighted overlay’ tool to aggregate the factors and constraints with the weights of the criteria. The LSA found only 5% of land was most suitable for industrial sites and few compact lands for industrial zones. The developed LSA are expected to help policy makers of land use and urban developers to ensure the sustainability of land uses and agricultural production.

Keywords: AHP (analytical hierarchy process), GIS (geographic information system), LSA (land suitability analysis), MCA (multi-criteria analysis)

Procedia PDF Downloads 259
7710 Sensitivity Analysis and Solitary Wave Solutions to the (2+1)-Dimensional Boussinesq Equation in Dispersive Media

Authors: Naila Nasreen, Dianchen Lu

Abstract:

This paper explores the dynamical behavior of the (2+1)-dimensional Boussinesq equation, which is a nonlinear water wave equation and is used to model wave packets in dispersive media with weak nonlinearity. This equation depicts how long wave made in shallow water propagates due to the influence of gravity. The (2+1)- dimensional Boussinesq equation combines the two-way propagation of the classical Boussinesq equation with the dependence on a second spatial variable, as that occurs in the two-dimensional Kadomstev- Petviashvili equation. This equation provides a description of head- on collision of oblique waves and it possesses some interesting properties. The governing model is discussed by the assistance of Ricatti equation mapping method, a relatively integration tool. The solutions have been extracted in different forms the solitary wave solutions as well as hyperbolic and periodic solutions. Moreover, the sensitivity analysis is demonstrated for the designed dynamical structural system’s wave profiles, where the soliton wave velocity and wave number parameters regulate the water wave singularity. In addition to being helpful for elucidating nonlinear partial differential equations, the method in use gives previously extracted solutions and extracts fresh exact solutions. Assuming the right values for the parameters, various graph in different shapes are sketched to provide information about the visual format of the earned results. This paper’s findings support the efficacy of the approach taken in enhancing nonlinear dynamical behavior. We believe this research will be of interest to a wide variety of engineers that work with engineering models. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complicated systems in a variety of fields, especially in ocean engineering.

Keywords: (2+1)-dimensional Boussinesq equation, solitary wave solutions, Ricatti equation mapping approach, nonlinear phenomena

Procedia PDF Downloads 95
7709 Social Interaction Dynamics Exploration: The Case Study of El Sherouk City

Authors: Nardine El Bardisy, Wolf Reuter, Ayat Ismail

Abstract:

In Egypt, there is continuous housing demand as a result of rapid population growth. In 1979, this forced the government to establish new urban communities in order to decrease stress around delta. New Urban Communities Authority (NUCA) was formulated to take the responsibly of this new policy. These communities suffer from social life deficiency due to their typology, which is separated island with barriers. New urban communities’ typology results from the influence of neoliberalism movement and modern city planning forms. The lack of social interaction in these communities at present should be enhanced in the future. On a global perspective, sustainable development calls for creating more sustainable communities which include social, economic and environmental aspects. From 1960, planners were highly focusing on the promotion of the social dimension in urban development plans. The research hypothesis states: “It is possible to promote social interaction in new urban communities through a set of socio-spatial recommended strategies that are tailored for Greater Cairo Region context”. In order to test this hypothesis, the case of El-Sherouk city is selected, which represents the typical NUCA development plans. Social interaction indicators were derived from literature and used to explore different social dynamics in the selected case. The tools used for exploring case study are online questionnaires, face to face questionnaires, interviews, and observations. These investigations were analyzed, conclusions and recommendations were set to improve social interaction.

Keywords: new urban communities, modern planning, social interaction, social life

Procedia PDF Downloads 123
7708 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 236
7707 Towards Carbon-Free Communities: A Compilation of Urban Design Criteria for Sustainable Neighborhoods

Authors: Atefeh Kalantari

Abstract:

The increase in population and energy consumption has caused environmental crises such as the energy crisis, increased pollution, and climate change, all of which have resulted in a decline in the quality of life, especially in urban environments. Iran is one of the developing countries which faces several challenges concerning energy use and environmental sustainability such as air pollution, climate change, and energy security. On the other hand, due to its favorable geographic characteristics, Iran has diverse and accessible renewable sources, which provide appropriate substitutes to reduce dependence on fossil fuels. Sustainable development programs and post-carbon cities rely on implementing energy policies in different sectors of society, particularly, the built environment sector is one of the main ones responsible for energy consumption and carbon emissions for cities. Because of this, several advancements and programs are being implemented to promote energy efficiency for urban planning, and city experts, like others, are looking for solutions to deal with these problems. Among the solutions provided for this purpose, low-carbon design can be mentioned. Among the different scales, the neighborhood can be mentioned as a suitable scale for applying the principles and solutions of low-carbon urban design; Because the neighborhood as a "building unit of the city" includes elements and flows that all affect the number of CO2 emissions. The article aims to provide criteria for designing a low-carbon and carbon-free neighborhood through descriptive methods and secondary data analysis. The ultimate goal is to promote energy efficiency and create a more resilient and livable environment for local residents.

Keywords: climate change, low-carbon urban design, carbon-free neighborhood, resilience

Procedia PDF Downloads 74
7706 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 248
7705 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 415
7704 Assessing the Actions of the Farm Mangers to Execute Field Operations at Opportune Times

Authors: G. Edwards, N. Dybro, L. J. Munkholm, C. G. Sørensen

Abstract:

Planning agricultural operations requires an understanding of when fields are ready for operations. However determining a field’s readiness is a difficult process that can involve large amounts of data and an experienced farm manager. A consequence of this is that operations are often executed when fields are unready, or partially unready, which can compromise results incurring environmental impacts, decreased yield and increased operational costs. In order to assess timeliness of operations’ execution, a new scheme is introduced to quantify the aptitude of farm managers to plan operations. Two criteria are presented by which the execution of operations can be evaluated as to their exploitation of a field’s readiness window. A dataset containing the execution dates of spring and autumn operations on 93 fields in Iowa, USA, over two years, was considered as an example and used to demonstrate how operations’ executions can be evaluated. The execution dates were compared with simulated data to gain a measure of how disparate the actual execution was from the ideal execution. The presented tool is able to evaluate the spring operations better than the autumn operations as required data was lacking to correctly parameterise the crop model. Further work is needed on the underlying models of the decision support tool in order for its situational knowledge to emulate reality more consistently. However the assessment methods and evaluation criteria presented offer a standard by which operations' execution proficiency can be quantified and could be used to identify farm managers who require decisional support when planning operations, or as a means of incentivising and promoting the use of sustainable farming practices.

Keywords: operation management, field readiness, sustainable farming, workability

Procedia PDF Downloads 386
7703 Rice Husk Silica as an Alternative Material for Renewable Energy

Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen

Abstract:

Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).

Keywords: siliceous, leached, biomass, solid-liquid extraction

Procedia PDF Downloads 67
7702 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system

Procedia PDF Downloads 348
7701 Removal of Chromium (VI) from Contaminated Synthetic Groundwater Using Functionalized Carbon Nanomaterials Modified with Zinc and Potassium

Authors: P. D. Ibikunle, D. O. Bala, A. P. Olawolu, A. A. Adebayo

Abstract:

Chromium has been discovered as a significant contributor to water pollution that causes cancer. Modified carbon nanotubes' (CNTs) potential as an adsorbent hasn't been thoroughly investigated. The study aimed at investigating the potentials of various functionalized carbon nanomaterials for Cr (VI) removal from contaminated synthetic groundwater. Functionalized carbon nanomaterials with layered and tube-like structures were designed based on thermal (KOH-activated micrographite sheets) and impregnation methods by anchoring K and Zn on carbon nanotubes (CNTs), respectively for the removal of Cr (VI) from contaminated synthetic groundwater. Zinc acetate modified carbon nanotubes (Zn-CNTs) and potassium hydroxide modified carbon nanotubes (K-CNTs) exhibited greater adsorption capacity for the Cr (VI) adsorbate compared to KOH-activated graphite (AC-1 and AC-0). Maximum removal efficiency for both adsorbents occurred at pH 2. Omu Aran Hand dug wells can therefore be treated with K–CNTs, since the experimental outcomes showed that CNTs adsorbent could operate well in a range of the experimental scenarios.

Keywords: carbon nanotubes, Chromium (VI), adsorption, water treatment, graphitic carbon, kinetics

Procedia PDF Downloads 29
7700 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 77
7699 Population Dynamics of Cyprinid Fish Species (Mahseer: Tor Species) and Its Conservation in Yamuna River of Garhwal Region, India

Authors: Davendra Singh Malik

Abstract:

India is one of the mega-biodiversity countries in the world and contributing about 11.72% of global fish diversity. The Yamuna river is the longest tributary of Ganga river ecosystem, providing a natural habitat for existing fish diversity of Himalayan region of Indian subcontinent. The several hydropower dams and barrages have been constructed on different locations of major rivers in Garhwal region. These dams have caused a major ecological threat to change existing fresh water ecosystems altering water flows, interrupting ecological connectivity, fragmenting habitats and native riverine fish species. Mahseer fishes (Indian carp) of the genus Tor, are large cyprinids endemic to continental Asia popularly known as ‘Game or sport fishes’ have continued to be decimated by fragmented natural habitats due to damming the water flow in riverine system and categorized as threatened fishes of India. The fresh water fish diversity as 24 fish species were recorded from Yamuna river. The present fish catch data has revealed that mahseer fishes (Tor tor and Tor putitora) were contributed about 32.5 %, 25.6 % and 18.2 % in upper, middle and lower riverine stretches of Yaumna river. The length range of mahseer (360-450mm) recorded as dominant size of catch composition. The CPUE (catch per unit effort) of mahseer fishes also indicated about a sharp decline of fish biomass, changing growth pattern, sex ratio and maturity stages of fishes. Only 12.5 – 14.8 % mahseer female brooders have showed only maturity phases in breeding months. The fecundity of mature mahseer female fish brooders ranged from 2500-4500 no. of ova during breeding months. The present status of mahseer fishery has attributed to the over exploitative nature in Yamuna river. The mahseer population is shrinking continuously in down streams of Yamuna river due to cumulative effects of various ecological stress. Mahseer conservation programme have implemented as 'in situ fish conservation' for enhancement of viable population size of mahseer species and restore the genetic loss of mahseer fish germplasm in Yamuna river of Garhwal Himalayan region.

Keywords: conservation practice, population dynamics, tor fish species, Yamuna River

Procedia PDF Downloads 254
7698 Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics

Authors: Carlos Alberto Rivera-corredor, Angie Dayana Vargas-Ceballos, Edison Gilpavas, Izabela Dobrosz-Gómez, Miguel Ángel Gómez-García

Abstract:

Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions.

Keywords: adsorption, hexavalent chromium, kinetics, thermodynamics

Procedia PDF Downloads 297
7697 Biogas Production from Zebra Manure and Winery Waste Co-Digestion

Authors: Wicleffe Musingarimi

Abstract:

Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.

Keywords: anaerobic digestion, biogas, co-digestion, methanogens

Procedia PDF Downloads 224
7696 Toxicological Risk Analysis in Different Crops and Vegetables Exposed to High Fluoride-Contaminated Water

Authors: Pankaj Kumar

Abstract:

Despite few works reported about fluoride enrichment in the groundwater, no studies have done on exposure analysis for biological components in Patan district, Gujarat, Western India. Considering its vital importance, this study strives to quantify the bioaccumulation of fluoride in seven different crops and vegetables, viz. Spinach and Mustard leaves, Cauliflower, Wheat grains, Amaranth seed, Radish, and Garlic grown in the potentially fluoride contaminated area. Result shows that the order for fluoride accumulation among different analyzed plants are spinach (63.3 mg/kg) > mustard (48.9 mg/kg) > cauliflower (41.1 mg/kg) > radish (35.7 mg/kg) > garlic (33.2 mg/kg) > amaranth seed (26.7 mg/kg) > wheat (22.5 mg/kg). Fluoride concentration was highest in leafy vegetable, whereas the lowest was in wheat grains. Finally, estimated daily intake (EDI) and hazard index (HI) were calculated for local consumers of different age group, where it was found that young people (4-15 years) are at the highest risk of fluorosis. This study is relevant for better crop management, like substituting crops with woody plants, flowers, and people awareness.

Keywords: fluoride, bioaccumulation, health risk, water

Procedia PDF Downloads 115
7695 INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity

Authors: Medhat Gad

Abstract:

Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.

Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending

Procedia PDF Downloads 162
7694 Drivers of Deforestation in the Colombian Amazon: An Empirical Causal Loop Diagram of Food Security and Land-Use Change

Authors: Jesica López, Deniz Koca, Asaf Tzachor

Abstract:

In 2016 the historic peace accord between the Colombian government and the Revolutionary Armed Forces of Colombia (FARC) had no strong mechanism for managing changes to land use and the environment. Since the end of a 60-year conflict in Colombia, large areas of forest in the Amazon region have been rapidly converted to agricultural uses, most recently by cattle ranching. This suggests that the peace agreement presents a threat to the conservation of the country's rainforest. We analyze the effects of cattle ranching as a driver and accelerator of deforestation from a systemic perspective, focusing on two key leverage points the legal and illegal activities involved in the cattle ranching practices. We map and understand the inherent dynamic complexity of deforestation, including factors such as land policy instruments, national strategy to tackle deforestation, land use nexus with Amazonian food systems, and loss of biodiversity. Our results show that deforestation inside Colombian Protected Areas (PAs) in the Amazon region and the surrounding buffer areas has accelerated with the onset of peace. By using a systems analysis approach, we contextualized the competition of land between cattle ranching and the need to protect tropical forests and their biodiversity loss. We elaborate on future recommendations for land use management decisions making suggest the inclusion of an Amazonian food system, interconnecting and visualizing the synergies between sustainable development goals, climate action (SDG 13) and life on land (SDG 15).

Keywords: tropical rainforest, deforestation, sustainable land use, food security, Colombian Amazon

Procedia PDF Downloads 93
7693 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia

Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk

Abstract:

Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).

Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes

Procedia PDF Downloads 294
7692 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 119
7691 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet

Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri

Abstract:

The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.

Keywords: erosion-corrosion, flow velocity, jet impingement, sand loading

Procedia PDF Downloads 270
7690 Ways of Innovative Sustainable Agriculture in India

Authors: Shailja Thakur

Abstract:

In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario.

Keywords: cost of farming, information and communication technology, innovative steps, roof gardening, vermicomposting

Procedia PDF Downloads 302
7689 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 106
7688 Open Reading Frame Marker-Based Capacitive DNA Sensor for Ultrasensitive Detection of Escherichia coli O157:H7 in Potable Water

Authors: Rehan Deshmukh, Sunil Bhand, Utpal Roy

Abstract:

We report the label-free electrochemical detection of Escherichia coli O157:H7 (ATCC 43895) in potable water using a DNA probe as a sensing molecule targeting the open reading frame marker. Indium tin oxide (ITO) surface was modified with organosilane and, glutaraldehyde was applied as a linker to fabricate the DNA sensor chip. Non-Faradic electrochemical impedance spectroscopy (EIS) behavior was investigated at each step of sensor fabrication using cyclic voltammetry, impedance, phase, relative permittivity, capacitance, and admittance. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed significant changes in surface topographies of DNA sensor chip fabrication. The decrease in the percentage of pinholes from 2.05 (Bare ITO) to 1.46 (after DNA hybridization) suggested the capacitive behavior of the DNA sensor chip. The results of non-Faradic EIS studies of DNA sensor chip showed a systematic declining trend of the capacitance as well as the relative permittivity upon DNA hybridization. DNA sensor chip exhibited linearity in 0.5 to 25 pg/10mL for E. coli O157:H7 (ATCC 43895). The limit of detection (LOD) at 95% confidence estimated by logistic regression was 0.1 pg DNA/10mL of E. coli O157:H7 (equivalent to 13.67 CFU/10mL) with a p-value of 0.0237. Moreover, the fabricated DNA sensor chip used for detection of E. coli O157:H7 showed no significant cross-reactivity with closely and distantly related bacteria such as Escherichia coli MTCC 3221, Escherichia coli O78:H11 MTCC 723 and Bacillus subtilis MTCC 736. Consequently, the results obtained in our study demonstrated the possible application of developed DNA sensor chips for E. coli O157:H7 ATCC 43895 in real water samples as well.

Keywords: capacitance, DNA sensor, Escherichia coli O157:H7, open reading frame marker

Procedia PDF Downloads 142
7687 Geochemical Studies of Mud Volcanoes Fluids According to Petroleum Potential of the Lower Kura Depression (Azerbaijan)

Authors: Ayten Bakhtiyar Khasayeva

Abstract:

Lower Kura depression is a part of the South Caspian Basin (SCB), located between the folded regions of the Greater and Lesser Caucasus. The region is characterized by thick sedimentary cover 22 km (SCB up to 30 km), high sedimentation rate, low geothermal gradient (average value corresponds to 2 °C / 100m). There is Quaternary, Pliocene, Miocene and Oligocene deposits take part in geological structure. Miocene and Oligocene deposits are opened by prospecting and exploratory wells in the areas of Kalamaddin and Garabagli. There are 25 mud volcanoes within the territory of the Lower Kura depression, which are the unique source of information about hydrocarbons contenting great depths. During the wells data research, solid erupted products and mud volcano fluids, and according to the geological and thermal characteristics of the region, it was determined that the main phase of the hydrocarbon generation (MK1-AK2) corresponds to a wide range of depths from 10 to 14 km, which corresponds to the Pliocene-Miocene sediments, and to the "oil and gas windows" according to the intended meaning of R0 ≈ 0,65-0,85%. Fluids of mud volcanoes comprise by the following phases - gas, water. Gas phase consists mainly of methane (99%) of heavy hydrocarbons (С2+ hydrocarbons), CO2, N2, inert components He, Ar. The content of the С2+ hydrocarbons in the gases of mud volcanoes associated with oil deposits is increased. Carbon isotopic composition of methane for the Lower Kura depression varies from -40 ‰ to -60 ‰. Water of mud volcanoes are represented by all four genetic types. However the most typical types of water are HCN type. According to the Mg-Li geothermometer formation of mud waters corresponds to the temperature range from 20 °C to 140 °C (PC2). The solid product emissions of mud volcanoes identified 90 minerals and 30 trace elements. As a result geochemical investigation, thermobaric and geological conditions, zone oil and gas generation - the prospect of the Lower Kura depression is projected to depths greater than 10 km.

Keywords: geology, geochemistry, mud volcanoes, petroleum potential

Procedia PDF Downloads 360
7686 Kinetic Modelling of Drying Process of Jumbo Squid (Dosidicus Gigas) Slices Subjected to an Osmotic Pretreatment under High Pressure

Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Constanza Olivares-Rivera, Fernanda Marin-Monardez

Abstract:

This research presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of jumbo squid (Dosidicus gigas) cubes. The drying time was reduced to 2 hours at 60ºC and 5 hours at 40°C as compared to the jumbo squid samples untreated. This one was due to osmotic pressure under high-pressure treatment where increased salt saturation what caused an increasing water loss. Thus, a more reduced time during convective drying was reached, and so water effective diffusion in drying would play an important role in this research. Different working conditions such as pressure (350-550 MPa), pressure time (5-10 min), salt concentration, NaCl (10 y 15%) and drying temperature (40-60ºC) were optimized according to kinetic parameters of each mathematical model. The models used for drying experimental curves were those corresponding to Weibull, Page and Logarithmic models, however, the latest one was the best fitted to the experimental data. The values for water effective diffusivity varied from 4.82 to 6.59x10-9 m2/s for the 16 curves (DO+HHP) whereas the control samples obtained a value of 1.76 and 5.16×10-9 m2/s, for 40 and 60°C, respectively. On the other hand, quality characteristics such as color, texture, non-enzymatic browning, water holding capacity (WHC) and rehydration capacity (RC) were assessed. The L* (lightness) color parameter increased, however, b * (yellowish) and a* (reddish) parameters decreased for the DO+HHP treated samples, indicating treatment prevents sample browning. The texture parameters such as hardness and elasticity decreased, but chewiness increased with treatment, which resulted in a product with a higher tenderness and less firmness compared to the untreated sample. Finally, WHC and RC values of the most treatments increased owing to a minor damage in tissue cellular compared to untreated samples. Therefore, a knowledge regarding to the drying kinetic as well as quality characteristics of dried jumbo squid samples subjected to a pretreatment of osmotic dehydration under high hydrostatic pressure is extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.

Keywords: diffusion coefficient, drying process, high pressure, jumbo squid, modelling, quality aspects

Procedia PDF Downloads 240
7685 Wood Energy in Bangladesh: An Overview of Status, Challenges and Development

Authors: Md. Kamrul Hassan, Ari Pappinen

Abstract:

Wood energy is the single most important form of renewable energy in many parts of the world especially in the least developing countries in South Asia like Bangladesh. The last portion of the national population of this country depends on wood energy for their daily primary energy need. This paper deals with the estimation of wood fuel at the current level and identifies the challenges and strategies related to the development of this resource. Desk research, interactive research and field survey were conducted for gathering and analyzing of data for this study. The study revealed that wood fuel plays a significant role in total primary energy supply in Bangladesh, and the contribution of wood fuel in final energy consumption in 2013 was about 24%. Trees on homestead areas, secondary plantation on off forest lands, and forests are the main sources of supplying wood fuel in the country. Insufficient supply of wood fuel against high upward demand is the main cause of concern for sustainable consumption, which eventually leads deterioration and depletion of the resources. Inadequate afforestation programme, lack of initiatives towards the utilization of set-aside lands for wood energy plantations, and inefficient management of the existing resources have been identified as the major impediments to the development of wood energy in Bangladesh. The study argued that enhancement of public-private-partnership afforestation programmes, intensifying the waste and marginal lands with short-rotation tree species, and formulation of biomass-based rural energy strategies at the regional level are relevant to the promotion of sustainable wood energy in the country.

Keywords: Bangladesh, challenge, supply, wood energy

Procedia PDF Downloads 185
7684 Thermoluminescence Study of Cu Doped Lithium Tetra Borate Samples Synthesized by Water/Solution Assisted Method

Authors: Swarnapriya Thiyagarajan, Modesto Antonio Sosa Aquino, Miguel Vallejo Hernandez, Senthilkumar Kalaiselvan Dhivyaraj, Jayaramakrishnan Velusamy

Abstract:

In this paper the lithium tetra borate (Li2B4O7) was prepared by used water/solution assisted synthesis method. Once finished the synthesization, Copper (Cu) were used to doping material with Li2B4O7 in order to enhance its thermo luminescent properties. The heating temperature parameters were 750°C for 2 hr and 150°C for 2hr. The samples produced by water assisted method were doped at different doping percentage (0.02%, 0.04%, 0.06%, 0.08%, 0.12%, 0.5%, 0.1%, and 1%) of Cu.The characteristics and identification of Li2B4O7 (undoped and doped) were determined in four tests. They are X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Ultra violet visible spectroscopy (UV Vis). As it is evidence from the XRD and SEM results the obtained Li2B4O7 and Li2B4O7 doping with Cu was confirmed and also confirmed the chemical compositition and their morphologies. The obtained lithium tetraborate XRD pattern result was verified with the reference data of lithium tetraborate with tetragonal structure from JCPDS. The glow curves of Li2B4O7 and Li2B4O7 : Cu were obtained by thermo luminescence (TLD) reader (Harshaw 3500). The pellets were irradiated with different kind of dose (58mGy, 100mGy, 500mGy, and 945mGy) by using an X-ray source. Finally this energy response was also compared with TLD100. The order of kinetics (b), frequency factor (S) and activation energy (E) or the trapping parameters were calculated using peak shape method. Especially Li2B4O7: Cu (0.1%) presents good glow curve in all kind of doses. The experimental results showed that this Li2B4O7: Cu could have good potential applications in radiation dosimetry. The main purpose of this paper is to determine the effect of synthesis on the TL properties of doped lithium tetra borate Li2B4O7.

Keywords: dosimetry, irradiation, lithium tetraborate, thermoluminescence

Procedia PDF Downloads 274
7683 Experimental Studies on the Corrosion Effects of the Concrete Made with Tannery Effluent

Authors: K. Nirmalkumar

Abstract:

An acute water scarcity is prevailing in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the effluent from the tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength and the special properties such as chloride attack, sulphate attack and chemical attack were studied by casting various concrete specimens in form of cube, cylinders and beams, etc. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory. In this research study the corrosion results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that by the addition of admixtures, the adverse effects due to the usage of the treated and untreated tannery effluent are counteracted.

Keywords: corrosion, calcium nitrite, concrete, fly ash

Procedia PDF Downloads 266
7682 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 118