Search results for: antimicrobial polymers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1441

Search results for: antimicrobial polymers

1021 Increasing Redness and Microbial Stability of Low Nitrite Chicken Sausage by Encapsulated Tomato Pomace Extract

Authors: Bung-Orn Hemung, Nachayut Chanshotigul, Koo Bok Chin

Abstract:

Tomato pomace (TP) is the waste from tomato processing plants and its utilization as food ingredient may provide sustainable industry by reducing waste. TP was extracted by ethanol using microwave-assisted method at 180W for 90s. The ethanol was evaporated out, and an extract was encapsulated with maltodextrin (1:10) by spray drying to obtain an encapsulated TP extract (ETPE). The redness (a value) of ETPE powder was 6.5±0.05, and it was used as natural ingredient in the low-nitrite chicken sausage. Chicken emulsion sausage was prepared at 25 mg/kg of nitrite for being control. Effect of ETPE (1.0%) was evaluated along with the reference (150 mg/kg of nitrite without ETPE). The redness (a value) of sausage with ETPE was found at 6.8±0.03, which was higher than those of reference and control, which were at 4.8±.022 and 5.1±0.15, respectively. However, hardness, expressible moisture content and cooking yield values were reduced slightly. During storage at 10 °C in the air packed condition for 1 week, changes in color, pH, redness, and thiobarbituric acid reactive substances value were not significantly different. However, total microbial count of sausage samples with ETPE was lower than control for a 1 log cycle, suggesting microbial stability. Therefore, the addition of ETPE could be an alternative strategy to utilize TP as a natural colorant and antimicrobial agent to extend the shelf life of low-nitrite chicken sausage.

Keywords: antimicrobial ingredient, chicken sausage, ethanolic extract, low-nitrite sausage, tomato pomace

Procedia PDF Downloads 181
1020 Characterization and Evaluation of the Dissolution Increase of Molecular Solid Dispersions of Efavirenz

Authors: Leslie Raphael de M. Ferraz, Salvana Priscylla M. Costa, Tarcyla de A. Gomes, Giovanna Christinne R. M. Schver, Cristóvão R. da Silva, Magaly Andreza M. de Lyra, Danilo Augusto F. Fontes, Larissa A. Rolim, Amanda Carla Q. M. Vieira, Miracy M. de Albuquerque, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a drug used as first-line treatment of AIDS. However, it has poor aqueous solubility and wettability, presenting problems in the gastrointestinal tract absorption and bioavailability. One of the most promising strategies to improve the solubility is the use of solid dispersions (SD). Therefore, this study aimed to characterize SD EFZ with the polymers: PVP-K30, PVPVA 64 and SOLUPLUS in order to find an optimal formulation to compose a future pharmaceutical product for AIDS therapy. Initially, Physical Mixtures (PM) and SD with the polymers were obtained containing 10, 20, 50 and 80% of drug (w/w) by the solvent method. The best formulation obtained between the SD was selected by in vitro dissolution test. Finally, the drug-carrier system chosen, in all ratios obtained, were analyzed by the following techniques: Differential Scanning Calorimetry (DSC), polarization microscopy, Scanning Electron Microscopy (SEM) and spectrophotometry of absorption in the region of infrared (IR). From the dissolution profiles of EFV, PM and SD, the values of area Under The Curve (AUC) were calculated. The data showed that the AUC of all PM is greater than the isolated EFV, this result is derived from the hydrophilic properties of the polymers thus favoring a decrease in surface tension between the drug and the dissolution medium. In adittion, this ensures an increasing of wettability of the drug. In parallel, it was found that SD whom had higher AUC values, were those who have the greatest amount of polymer (with only 10% drug). As the amount of drug increases, it was noticed that these results either decrease or are statistically similar. The AUC values of the SD using the three different polymers, followed this decreasing order: SD PVPVA 64-EFV 10% > SD PVP-K30-EFV 10% > SD Soluplus®-EFV 10%. The DSC curves of SD’s did not show the characteristic endothermic event of drug melt process, suggesting that the EFV was converted to its amorphous state. The analysis of polarized light microscopy showed significant birefringence of the PM’s, but this was not observed in films of SD’s, thus suggesting the conversion of the drug from the crystalline to the amorphous state. In electron micrographs of all PM, independently of the percentage of the drug, the crystal structure of EFV was clearly detectable. Moreover, electron micrographs of the SD with the two polymers in different ratios investigated, we observed the presence of particles with irregular size and morphology, also occurring an extensive change in the appearance of the polymer, not being possible to differentiate the two components. IR spectra of PM corresponds to the overlapping of polymer and EFV bands indicating thereby that there is no interaction between them, unlike the spectra of all SD that showed complete disappearance of the band related to the axial deformation of the NH group of EFV. Therefore, this study was able to obtain a suitable formulation to overcome the solubility limitations of the EFV, since SD PVPVA 64-EFZ 10% was chosen as the best system in delay crystallization of the prototype, reaching higher levels of super saturation.

Keywords: characterization, dissolution, Efavirenz, solid dispersions

Procedia PDF Downloads 614
1019 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening

Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon

Abstract:

The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.

Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver

Procedia PDF Downloads 206
1018 Antimicrobial Activity of Igusa and the Application to Foam Materials for Food Industry

Authors: I. Nanako, Mariko Era, Hiroshi Morita

Abstract:

Objectives: Japanese uses TATAMI rather than flooring at home. Igusa ( Juncus effuses var. decipiens ), which is commonly known in the forms of TATAMI. Juncus spp. grow at a relatively high humidity area (Japan, China and Southeast Asia ). Yatsushiro region in the southern part of Kumamoto prefecture is major produing area of Igusa. Igusa found to have honeycomb structure and was also shown to have the ability to control humidity. And Igusa has been used as a medicinal herb for diuretic and antiphlogistic agent. In previous study, we investigated antimicrobial effects of Igusa, and showed high antimicrobial activity against food poisoning bacteria. Therefore, the food trays blended Igusa can be kept clean by antimicrobial activity of Igusa. We focus on ‘Igusa foam materials’. In this study, we investigated the antibacterial and antifungal activity of Igusa, and new application to foam materials for food industry. Materials and method: We used Igusa foam materials (3 × 3 × 3 cm) as a sample. We set about fifteen types of samples combined with a commercial antibacterial agent A, a commercial antibacterial agent B, potassium laurate (C12K) and a commercial antifungal agent C, a commercial antifungal agent D and a commercial antifungal agent E. We selected four bacteria strains (Escherichia coli NBRC 3972, Staphylococus aureus NBRC 12732, Salmonella typhimurium NBRC 13245, Bacillus subtilis NBRC 3335 ) and three fungus strains (Penicillium pinophilum NBRC 6345, Cladosporium cladosporioides NBRC 30314, Aspergillus oryzae NBRC 5238 ). The fungus was cultured at 30 °C on Igusa foam materials after inoculation of the fungus for fourteen days. The bacteria was cultured at 30 °C on Igusa foam materials after inoculation of the bacteria for three days. And the Igusa foam materials were washed with 10 mL normal saline after three days. The normal saline washed Igusa foam materials plated the NA medium. After, It was cultured at 30 °C and used colony counting method. Result and Conclusion: The fifteen types of sample of Igusa foam materials had antifungal activity against C. cladosporioides, A. oryzae and P. pinophilum for fourteen days. The four types of sample contained potassium laurate and antibacterial agent A, sample contained antibacterial agent B and antifungal agent D, sample contained A and antifungal agent E, sample contained B and E had antibacterial activity against B. subtilis. The three types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E had antibacterial activity against S. typhimurium. The five types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E, sample contained B and E, sample contained B and antifungal agent C had antibacterial activity against E. coli and S. aureus. These results indicate that Igusa of Igusa foam materials had high antifungal activity. In addition, Igusa foam materials combined with a commercial antibacterial agent had antibacterial activity. In the future, we consider that use of Igusa foam materials may be spread from food industry.

Keywords: antibacterial, antifungal, foam materials, Igusa

Procedia PDF Downloads 218
1017 Chemical Composition and Antibacterial Activity of Ceratonia siliqua L. Growing in Boumerdes, Algeria

Authors: N. Meziou-Chebouti, A. Merabet, Y. Chebouti N. Behidj

Abstract:

This work is a contribution to the knowledge of physicochemical characteristics of mature carob followed by evaluation of the activity, antimicrobial phenolics leaves and green pods of Ceratonia siliqua L. physicochemical study shows that mature carob it has a considerable content of sugar (50.90%), but poor in proteins (7%), fat (8%) and also has a high mineral content. The results obtained from phenolic extracts of leaves and green pods of Ceratonia siliqua L. show a wealth leaf phenolic extract especially flavonoids (0,545 mg EqQ/g) relative to the extract of green pods (0,226 mgEqQ/g). Polyphenols leaves have a slightly inhibitory effect on the growth of strains: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoiae, Streptococcus sp and Sanmonella enteritidis, a strong inhibitory effect on the growth of Pseudomonas strain aerogenosa. Moreover, polyphenols pod have a slightly inhibitory effect on the growth of Streptococcus sp strains, Pseudomonas and aerogenosa Sanmonella enteritidis, a slightly inhibitory effect on the growth of Klebsiella pneumoniae strains, E. coli and Staphylococcus aureus.

Keywords: antimicrobial activity, bacteria, clove, Ceratonia siliqua, polyphenols

Procedia PDF Downloads 331
1016 Survey of Selected Pathogenic Bacteria in Chickens from Rural Households in Limpopo Province

Authors: M. Lizzy Madiwani, Ignatious Ncube, Evelyn Madoroba

Abstract:

This study was designed to determine the distribution of pathogenic bacteria in household raised chickens and study their virulence and antibiotic profiles. For this purpose, 40 chickens were purchased from families in the Capricorn district and sacrificed for sampling. Tissues were cultured on different bacteriological media followed by biotyping using Matrix-assisted Laser Desorption Ionization-time of Flight (MALDI-TOF). Disk diffusion test was performed to determine the antibiotic susceptibility profiles of these bacteria. Out of a total of 160 tissue samples evaluated, E. coli and Salmonella were detected in these tissues. Furthermore, determination of the pathogenic E. coli and Salmonella strains at species level using primer sets that target selected genes of interest in the polymerase chain reaction (PCR) assay was employed. The invA gene, a confirmatory gene of Salmonella was detected in all the Salmonella isolates. The study revealed that there is a high distribution of Salmonella and pathogenic E. coli in these chickens. Therefore, further studies on identification at the species level are highly recommended to provide management and sanitation practices to lower this prevalence. The antimicrobial susceptibly data generated from this study can be a valuable reference to veterinarians for treating bacterial diseases in poultry.

Keywords: antimicrobial, Escherichia coli, pathogens, Salmonella

Procedia PDF Downloads 101
1015 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 137
1014 Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf

Authors: H. Alijani, M. Jabari, S. Matroodi, H. Zolqarnein, A. Sharafi, I. Zamani

Abstract:

Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities.

Keywords: antibacterial activity, antifungal activity, marine actinomycetes, Persian Gulf

Procedia PDF Downloads 281
1013 Antimicrobial Effect of Essential Oil of Plant Schinus molle on Some Bacteria Pathogens

Authors: Mehani Mouna, Ladjel segni

Abstract:

Humans use plants for thousands of years to treat various ailments, In many developing countries, Much of the population relies on traditional doctors and their collections of medicinal plants to cure them. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Schinus molle on some pathogenic bacteria. It is a medicinal plant used in traditional therapy. Essential oils have many therapeutic properties. In herbal medicine, They are used for their antiseptic properties against infectious diseases of fungal origin, Against dermatophytes, Those of bacterial origin. The test adopted is based on the diffusion method on solid medium (Antibiogram), This method allows to determine the susceptibility or resistance of an organism according to the sample studied. Our study reveals that the essential oil of the plant Schinus molle has a different effect on the resistance of germs: For Pseudomonas aeruginosa strain is a moderately sensitive with an inhibition zone of 10 mm, Further Antirobactere, Escherichia coli and Proteus are strains that represent a high sensitivity, A zone of inhibition equal to 14.66 mm.

Keywords: Essential oil, microorganism, antibiogram, shinus molle

Procedia PDF Downloads 320
1012 Typification and Determination of Antibiotic Resistance Rates of Stenotrophomonas Maltophilia Strains Isolated from Intensive Care Unit Patients in a University Practice and Research Hospital

Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz

Abstract:

Objective: Stenotrophomonas maltophilia (S. maltophilia) has recently emerged as an important nosocomial microorganism. Treatment of invasive infections caused by this organism is problematic because this microorganism is usually resistant to a wide range of commonly used antimicrobials. We aimed to evaluate clinical isolates of S. maltophilia in respect to sampling sites and antimicrobial resistant. Method: During a two years period (October 2013 and September 2015) eighteen samples collected from the intensive care unit (ICU) patients hospitalized in Afyon Kocatepe University, ANS Practice and Research Hospital. Identification of the bacteria was determined by conventional methods and automated identification system-VITEK 2 (bio-Mérieux, Marcy l’toile, France). Antibacterial resistance tests were performed by Kirby Bauer disc (Oxoid, England) diffusion method following the recommendations of CLSI. Results: Eighteen S. maltophilia strains were identified as the causative agents of different infections. The main type of infection was lower respiratory tract infection (83,4 %); three patients (16,6 %) had bloodstream infection. While, none of the 18 S. maltophilia strains were found to be resistant against to trimethoprim sulfametaxasole (TMP-SXT) and levofloxacine, eight strains 66.6 % were found to be resistant against ceftazidim. Conclusion: The isolation of S.maltophilia starains resistant to TMP-SXT is vital. In order to prevent or minimize infections due to S. maltophilia such precuations should be utilized: Avoidance of inappropriate antibiotic use, prolonged implementation of foreign devices, reinforcement of hand hygiene practices and the application of appropriate infection control practices. Microbiology laboratories also may play important roles in controlling S. maltophilia infections by monitoring the prevalence, continuously, the provision of local antibiotic resistance paterns data and the performance of synergistic studies also may help to guide appropirate antimicrobial therapy choices.

Keywords: Stenotrophomonas maltophilia, trimethoprim-sulfamethoxazole, antimicrobial resistance, Stenotrophomonas spp.

Procedia PDF Downloads 230
1011 Analysis of Inventory Control, Lot Size and Reorder Point for Engro Polymers and Chemicals

Authors: Ali Akber Jaffri, Asad Naseem, Javeria Khan

Abstract:

The purpose of this study is to determine safety stock, maximum inventory level, reordering point, and reordering quantity by rearranging lot sizes for supplier and customer in MRO (maintenance repair operations) warehouse of Engro Polymers & Chemicals. To achieve the aim, physical analysis method and excel commands were carried out to elicit the customer and supplier data provided by the company. Initially, we rearranged the current lot sizes and MOUs (measure of units) in SAP software. Due to change in lot sizes we have to determine the new quantities for safety stock, maximum inventory, reordering point and reordering quantity as per company's demand. By proposed system, we saved extra cost in terms of reducing the time of receiving from vendor and in issuance to customer, ease of material handling in MRO warehouse and also reduce human efforts. The information requirements identified in this study can be utilized in calculating Economic Order Quantity.

Keywords: carrying cost, economic order quantity, fast moving, lead time, lot size, MRO, maximum inventory, ordering cost, physical inspection, reorder point

Procedia PDF Downloads 220
1010 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh

Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani

Abstract:

Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).

Keywords: polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2

Procedia PDF Downloads 268
1009 Pro-Ecological Antioxidants for Polymeric Composites

Authors: Masek A., Zaborski M.

Abstract:

In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.

Keywords: polymers, flavonoids, stabilization, ageing, oxidation

Procedia PDF Downloads 284
1008 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 133
1007 Molecular Profiling and Potential Bioactive Characteristics of Endophytic Fungi Isolated from Leptadenia Pyrotechnica

Authors: Walaa Al-Maghraby

Abstract:

Endophytes are organisms that colonize internal plant tissues without causing apparent harm to their host. Almost all groups of microorganisms have been found in endophytic association with plants may be fungi. They stimulate the production of secondary metabolites with a diverse range of biological activities. Leptadenia pyrotechnica is a more or less leafless, erect shrub with straight stems which is highly distributed in Saudi Arabia. Four endophytes fungi were isolated from Leptadenia pyrotechnica and identified using 18S ribosomal RNA sequences, which revealed four fungi genuses, namely Aspergillus terreus; Aspergillus welwitschiae; Aspergillus fumigatus and Aspergillus flavus. In this present study, four endophytic fungi from Leptadenia pyrotechnica were used for obtaining crude aqueous and ethyl acetate extracts for antimicrobial screening against 6 human pathogens, the antibacterial tests presented satisfactory results, where the pathogenic bacteria were inhibited by the four extracts tested, except for Escherichia coli that was inhibited by all extracts except ethyl acetate extract of Aspergillus terreus. Analysis of variance showed that the extract produced by endophyte Leptadenia pyrotechnica was the most effective against all bacteria, either gram-negative or positive. However, the extract was not efficient against pathogenic fungi. Therefore, this study indicates that endophytes from medicinal plant Leptadenia pyrotechnica could be potential sources of antibacterial substances.

Keywords: antimicrobial activity, Aspergillus sp, endophytes, Leptadenia pyrotechnica

Procedia PDF Downloads 126
1006 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers

Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa

Abstract:

Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.

Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy

Procedia PDF Downloads 318
1005 Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems

Authors: Marouen Hamdi, Johannes A. Poulis

Abstract:

This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints.

Keywords: accelerated tests, adhesion strength, ageing of polymers, UV/ozone treatment

Procedia PDF Downloads 127
1004 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 372
1003 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers

Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz

Abstract:

In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.

Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber

Procedia PDF Downloads 279
1002 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 226
1001 New Method for Determining the Distribution of Birefringence and Linear Dichroism in Polymer Materials Based on Polarization-Holographic Grating

Authors: Barbara Kilosanidze, George Kakauridze, Levan Nadareishvili, Yuri Mshvenieradze

Abstract:

A new method for determining the distribution of birefringence and linear dichroism in optical polymer materials is presented. The method is based on the use of polarization-holographic diffraction grating that forms an orthogonal circular basis in the process of diffraction of probing laser beam on the grating. The intensities ratio of the orders of diffraction on this grating enables the value of birefringence and linear dichroism in the sample to be determined. The distribution of birefringence in the sample is determined by scanning with a circularly polarized beam with a wavelength far from the absorption band of the material. If the scanning is carried out by probing beam with the wavelength near to a maximum of the absorption band of the chromophore then the distribution of linear dichroism can be determined. An appropriate theoretical model of this method is presented. A laboratory setup was created for the proposed method. An optical scheme of the laboratory setup is presented. The results of measurement in polymer films with two-dimensional gradient distribution of birefringence and linear dichroism are discussed.

Keywords: birefringence, linear dichroism, graded oriented polymers, optical polymers, optical anisotropy, polarization-holographic grating

Procedia PDF Downloads 408
1000 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 114
999 The Effect of Lead(II) Lone Electron Pair and Non-Covalent Interactions on the Supramolecular Assembly and Fluorescence Properties of Pb(II)-Pyrrole-2-Carboxylato Polymer

Authors: M. Kowalik, J. Masternak, K. Kazimierczuk, O. V. Khavryuchenko, B. Kupcewicz, B. Barszcz

Abstract:

Recently, the growing interest of chemists in metal-organic coordination polymers (MOCPs) is primarily derived from their intriguing structures and potential applications in catalysis, gas storage, molecular sensing, ion exchanges, nonlinear optics, luminescence, etc. Currently, we are devoting considerable effort to finding the proper method of synthesizing new coordination polymers containing S- or N-heteroaromatic carboxylates as linkers and characterizing the obtained Pb(II) compounds according to their structural diversity, luminescence, and thermal properties. The choice of Pb(II) as the central ion of MOCPs was motivated by several reasons mentioned in the literature: i) a large ionic radius allowing for a wide range of coordination numbers, ii) the stereoactivity of the 6s2 lone electron pair leading to a hemidirected or holodirected geometry, iii) a flexible coordination environment, and iv) the possibility to form secondary bonds and unusual non-covalent interactions, such as classic hydrogen bonds and π···π stacking interactions, as well as nonconventional hydrogen bonds and rarely reported tetrel bonds, Pb(lone pair)···π interactions, C–H···Pb agostic-type interactions or hydrogen bonds, and chelate ring stacking interactions. Moreover, the construction of coordination polymers requires the selection of proper ligands acting as linkers, because we are looking for materials exhibiting different network topologies and fluorescence properties, which point to potential applications. The reaction of Pb(NO₃)₂ with 1H-pyrrole-2-carboxylic acid (2prCOOH) leads to the formation of a new four-nuclear Pb(II) polymer, [Pb4(2prCOO)₈(H₂O)]ₙ, which has been characterized by CHN, FT-IR, TG, PL and single-crystal X-ray diffraction methods. In view of the primary Pb–O bonds, Pb1 and Pb2 show hemidirected pentagonal pyramidal geometries, while Pb2 and Pb4 display hemidirected octahedral geometries. The topology of the strongest Pb–O bonds was determined as the (4·8²) fes topology. Taking the secondary Pb–O bonds into account, the coordination number of Pb centres increased, Pb1 exhibited a hemidirected monocapped pentagonal pyramidal geometry, Pb2 and Pb4 exhibited a holodirected tricapped trigonal prismatic geometry, and Pb3 exhibited a holodirected bicapped trigonal prismatic geometry. Moreover, the Pb(II) lone pair stereoactivity was confirmed by DFT calculations. The 2D structure was expanded into 3D by the existence of non-covalent O/C–H···π and Pb···π interactions, which was confirmed by the Hirshfeld surface analysis. The above mentioned interactions improve the rigidity of the structure and facilitate the charge and energy transfer between metal centres, making the polymer a promising luminescent compound.

Keywords: coordination polymers, fluorescence properties, lead(II), lone electron pair stereoactivity, non-covalent interactions

Procedia PDF Downloads 130
998 Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.)

Authors: Mekhaldi Abdelkader, Bouzned Ahcen, Djibaoui Rachid, Hamoum Hakim

Abstract:

This study presents an attempt to evaluate the antioxidant and antimicrobial activity of methanolic extract and essential oils prepared from the leaves of sage (Salvia officinalis L.). The content of polyphenols in the methanolic extract of the leaves from Salvia officinalis extract was determined by spectrophoto- metrically, calculated as gallic acid and catechin equivalent. Antioxidant activity was evaluated by free radical scavenging activity using 2,2-diphenylpicryl-1-picrylhydrazyl (DPPH) assay. The plant essential oil and methanol extract were also subjected to screenings for the evaluation of their antioxidant activities using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test. While the plant essential oil showed only weak antioxidant activities, its methanol extract was considerably active in DPPH (IC50= 37.29µg/ml) test. Appreciable total phenolic content (31.25mg/g) was also detected for the plant methanol extract as gallic acid equivalent in the Folin–Ciocalteu test. The plant was also screened for its antimicrobial activity and good to moderate inhibitions were recorded for its essential oil and methanol extract against most of the tested microorganisms. The present investigation revealed that this plant has rich source of antioxidant properties. It is for this reason that sage has found increasing application in food formulations.

Keywords: antibacterial activity, antioxidant activity, flavonoid, polyphenol, salvia officinalis

Procedia PDF Downloads 388
997 Renewable and Functional Biopolymers Using Green Chemistry

Authors: Aman Ullah

Abstract:

The use of renewable resources in supplementing and/or replacing traditional petrochemical products, through green chemistry, is becoming the focus of research. The utilization of oils can play a primitive role towards sustainable development due to their large scale availability, built-in-functionality, biodegradability and no net CO2 production. Microwaves, being clean, green and environmentally friendly, are emerging as an alternative source for product development. Solvent free conversion of fatty acid methyl esters (FAME's) derived from canola oil and waste cooking oil under microwave irradiation demonstrated dramatically enhanced rates. The microwave-assisted reactions lead to the most valuable terminal olefins with enhanced yields, purities and dramatic shortening of reaction times. Various monomers/chemicals were prepared in high yield in very short time. The complete conversions were observed at temperatures as low as 40 ºC within less than five minutes. The products were characterized by GC-MS, GC-FID and NMR. The monomers were separated and polymerized into different polymers including biopolyesthers, biopolyesters, biopolyamides and biopolyolefins. The polymers were characterized in details for their structural, thermal, mechanical and viscoelastic properties. The ability for complete conversion of oils under solvent free conditions and synthesis of different biopolymers is undoubtedly an attractive concept from both an academic and an industrial point of view.

Keywords: monomers, biopolymers, green chemistry, bioplastics, biomaterials

Procedia PDF Downloads 82
996 Antibacterial Activity of Salvadora persica Extracts against Oral Cavity Bacteria

Authors: Sulaiman A. Alrumman, Abd El-Latif Hesham

Abstract:

Despite medical progress worldwide, dental caries are still widespread. Miswak is derived from the plant arak (Salvadora persica). It is used by Muslim people as a natural product for the cleansing of teeth, to ensure oral and dental hygiene. This study was designed to evaluate the antimicrobial effects of ethanol, methanol, and ethanol/methanol extracts of miswak against three bacterial pathogens of the oral cavity. The pathogens were isolated from the oral cavity of volunteers/patients and were identified on the basis of 16S rRNA gene amplification data. Sequence comparisons were made with 16S rRNA gene sequences available in the GenBank database. The results of sequence alignment and phylogenetic analysis identified the three pathogens as being Staphylococcus aureus strain KKU-020, Enterococcus faecalis strain KKU-021 and Klebsiella pneumoniae strain KKU-022. All miswak extracts showed powerful antimicrobial activity against the three pathogens. The maximum zone of inhibition (40.67±0.88 mm) was observed against E. faecalis with ethanolic extracts whilst methanolic extracts showed the minimum zone of inhibition (10.33±0.88 mm) against K. pneumonia KKU-022. Based on the significant effects of the miswak extracts against the oral cavity pathogens in our study, we recommend that miswak is to be used as a dental hygiene method to prevent tooth caries.

Keywords: antibacterial, miswak, Salvadora persica, oral cavity pathogens

Procedia PDF Downloads 274
995 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food

Authors: Aiman Zehra, Sajad Mohd Wani

Abstract:

Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.

Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers

Procedia PDF Downloads 75
994 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.

Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers

Procedia PDF Downloads 279
993 Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications

Authors: Valeria Piccioni, Matthias Leschok, Ina Cheibas, Illias Hischier, Benjamin Dillenburger, Arno Schlueter, Matthias Kohler, Fabio Gramazio

Abstract:

The decarbonisation of the building sector requires the development of building components that provide energy efficiency while producing minimal environmental impact. Recent advancements in large-scale 3D printing have shown that it is possible to fabricate components with embedded performances that can be tuned for their specific application. We investigate the potential of polymer 3D printing for the fabrication of translucent facade components. In this study, we explore the effect of geometry on thermal insulation of printed cavity structures following a Hot Box test method. The experimental results are used to calibrate a finite-element simulation model which can support the informed design of 3D printed insulation structures. We show that it is possible to fabricate components providing thermal insulation ranging from 1.7 to 0.95 W/m2K only by changing the internal cavity distribution and size. Moreover, we identify design guidelines that can be used to fabricate components for different climatic conditions and thermal insulation requirements. The research conducted provides the first insights into the thermal behaviour of polymer 3DP facades on a large scale. These can be used as design guidelines for further research toward performant and low-embodied energy 3D printed facade components.

Keywords: 3D printing, thermal performance, polymers, facade components, hot-box method

Procedia PDF Downloads 156
992 Systematic Study of Mutually Inclusive Influence of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymer and Their Properties

Authors: Manasi Roy, Raju Mondal

Abstract:

During last two decades the synthesis and design of MOFs or novel coordination polymers (CPs) has flourished as an emerging area of research due to their role as functional materials. Accordingly, ten new cobalt-based MOFs have been synthesized using a simple bispyrazole ligand, 4,4′-methylene-bispyrazole (H2MBP), and isophthalic acid (H2IPA) and its four 5-substituted derivatives R-H2IPA (R = COOH, OH, tBu, NH2). The major aim of this study was to validate the mutual influence of temperature and substitutions on the final structural self-assembly. Five different isophthalic acid derivatives were used to study the influence of substituents while each reaction was carried out at two different temperatures to assess the temperature effect. A clear correlation was observed between the reaction temperature and the coordination number of the cobalt atoms which consequently changes the self assembly pattern. Another fact that the periodical change in coordination number did bring about some systematic changes in the structural network via secondary building unit selectivity. With the presence of a tunable cavity inside the network, and unsaturated metal centers, MOFs show highly encouraging photocatalytic degradation of toxic dye with a potential application in waste water purification. Another fascinating aspect of this work is the construction of magnetic coordination polymers with the occurrence of a not-so-common MCE behavior of cobalt-based MOF.

Keywords: MOFs, temperature effect, MCE, dye degradation

Procedia PDF Downloads 115