Search results for: grain coarsening temperature
3232 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador
Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito
Abstract:
For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador
Procedia PDF Downloads 2473231 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design
Procedia PDF Downloads 1733230 Detection the Ice Formation Processes Using Multiple High Order Ultrasonic Guided Wave Modes
Authors: Regina Rekuviene, Vykintas Samaitis, Liudas Mažeika, Audrius Jankauskas, Virginija Jankauskaitė, Laura Gegeckienė, Abdolali Sadaghiani, Shaghayegh Saeidiharzand
Abstract:
Icing brings significant damage to aviation and renewable energy installations. Air-conditioning, refrigeration, wind turbine blades, airplane and helicopter blades often suffer from icing phenomena, which cause severe energy losses and impair aerodynamic performance. The icing process is a complex phenomenon with many different causes and types. Icing mechanisms, distributions, and patterns are still relevant to research topics. The adhesion strength between ice and surfaces differs in different icing environments. This makes the task of anti-icing very challenging. The techniques for various icing environments must satisfy different demands and requirements (e.g., efficient, lightweight, low power consumption, low maintenance and manufacturing costs, reliable operation). It is noticeable that most methods are oriented toward a particular sector and adapting them to or suggesting them for other areas is quite problematic. These methods often use various technologies and have different specifications, sometimes with no clear indication of their efficiency. There are two major groups of anti-icing methods: passive and active. Active techniques have high efficiency but, at the same time, quite high energy consumption and require intervention in the structure’s design. It’s noticeable that vast majority of these methods require specific knowledge and personnel skills. The main effect of passive methods (ice-phobic, superhydrophobic surfaces) is to delay ice formation and growth or reduce the adhesion strength between the ice and the surface. These methods are time-consuming and depend on forecasting. They can be applied on small surfaces only for specific targets, and most are non-biodegradable (except for anti-freezing proteins). There is some quite promising information on ultrasonic ice mitigation methods that employ UGW (Ultrasonic Guided Wave). These methods are have the characteristics of low energy consumption, low cost, lightweight, and easy replacement and maintenance. However, fundamental knowledge of ultrasonic de-icing methodology is still limited. The objective of this work was to identify the ice formation processes and its progress by employing ultrasonic guided wave technique. Throughout this research, the universal set-up for acoustic measurement of ice formation in a real condition (temperature range from +240 C to -230 C) was developed. Ultrasonic measurements were performed by using high frequency 5 MHz transducers in a pitch-catch configuration. The selection of wave modes suitable for detection of ice formation phenomenon on copper metal surface was performed. Interaction between the selected wave modes and ice formation processes was investigated. It was found that selected wave modes are sensitive to temperature changes. It was demonstrated that proposed ultrasonic technique could be successfully used for the detection of ice layer formation on a metal surface.Keywords: ice formation processes, ultrasonic GW, detection of ice formation, ultrasonic testing
Procedia PDF Downloads 673229 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite
Authors: Hazleen Anuar, Nur Aimi Mohd Nasir
Abstract:
Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis
Procedia PDF Downloads 4663228 Mechanism and Kinetic of Layers Growth: Application to Nitriding of 32CrMoV13 Steel
Authors: Torchane Lazhar
Abstract:
In this work, our task consists in optimizing the nitriding treatment at low-temperature of the steel 32CrMoV13 by the way of the mixtures of ammonia gas, nitrogen and hydrogen to improve the mechanical properties of the surface (good wear resistance, friction and corrosion), and of the diffusion layer of the nitrogen (good resistance to fatigue and good tenacity with heart). By limiting our work to the pure iron and to the alloys iron-chromium and iron-chrome-carbon, we have studied the various parameters which manage the nitriding: flow rate and composition of the gaseous phase, the interaction chromium-nitrogen and chromium-carbon by the help of experiments of nitriding realized in the laboratory by thermogravimetry. The acquired knowledge have been applied by the mastery of the growth of the combination layer on the diffusion layer in the case of the industrial steel 32CrMoV13.Keywords: diffusion of nitrogen, gaseous nitriding, layer growth kinetic, steel
Procedia PDF Downloads 4153227 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics
Authors: Geraldine Giraldo
Abstract:
In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic
Procedia PDF Downloads 733226 A Retrospective Cohort Study on an Outbreak of Gastroenteritis Linked to a Buffet Lunch Served during a Conference in Accra
Authors: Benjamin Osei Tutu, Sharon Annison
Abstract:
On 21st November, 2016, an outbreak of foodborne illness occurred after a buffet lunch served during a stakeholders’ consultation meeting held in Accra. An investigation was conducted to characterise the affected people, determine the etiologic food, the source of contamination and the etiologic agent and to implement appropriate public health measures to prevent future occurrences. A retrospective cohort study was conducted via telephone interviews, using a structured questionnaire developed from the buffet menu. A case was defined as any person suffering from symptoms of foodborne illness e.g. diarrhoea and/or abdominal cramps after eating food served during the stakeholder consultation meeting in Accra on 21st November, 2016. The exposure status of all the members of the cohort was assessed by taking the food history of each respondent during the telephone interview. The data obtained was analysed using Epi Info 7. An environmental risk assessment was conducted to ascertain the source of the food contamination. Risks of foodborne infection from the foods eaten were determined using attack rates and odds ratios. Data was obtained from 54 people who consumed food served during the stakeholders’ meeting. Out of this population, 44 people reported with symptoms of food poisoning representing 81.45% (overall attack rate). The peak incubation period was seven hours with a minimum and maximum incubation periods of four and 17 hours, respectively. The commonly reported symptoms were diarrhoea (97.73%, 43/44), vomiting (84.09%, 37/44) and abdominal cramps (75.00%, 33/44). From the incubation period, duration of illness and the symptoms, toxin-mediated food poisoning was suspected. The environmental risk assessment of the implicated catering facility indicated a lack of time/temperature control, inadequate knowledge on food safety among workers and sanitation issues. Limited number of food samples was received for microbiological analysis. Multivariate analysis indicated that illness was significantly associated with the consumption of the snacks served (OR 14.78, P < 0.001). No stool and blood or samples of etiologic food were available for organism isolation; however, the suspected etiologic agent was Staphylococcus aureus or Clostridium perfringens. The outbreak could probably be due to the consumption of unwholesome snack (tuna sandwich or chicken. The contamination and/or growth of the etiologic agent in the snack may be due to the breakdown in cleanliness, time/temperature control and good food handling practices. Training of food handlers in basic food hygiene and safety is recommended.Keywords: Accra, buffet, conference, C. perfringens, cohort study, food poisoning, gastroenteritis, office workers, Staphylococcus aureus
Procedia PDF Downloads 2353225 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters
Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng
Abstract:
Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum
Procedia PDF Downloads 1703224 Preliminary Studies on Poloxamer-Based Hydrogels with Oregano Essential Oil as Potential Topical Treatment of Cutaneous Papillomas
Authors: Ana Maria Muț, Georgeta Coneac, Ioana Olariu, Ștefana Avram, Ioana Zinuca Pavel, Ionela Daliana Minda, Lavinia Vlaia, Cristina Adriana Dehelean, Corina Danciu
Abstract:
Oregano essential oil is obtained from different parts of the plant Origanum vulgare (fam. Lamiaceae) and carvacrol and thymol are primary components, widely recognized for their antimicrobial activity, as well as their antiviral and antifungal properties. Poloxamers are triblock copolymers (Pluronic®), formed of three non-ionic blocks with a hydrophobic polyoxypropylene central chain flanked by two polyoxyethylene hydrophilic chains. They are known for their biocompatibility, sensitivity to temperature changes (sol-to-gel transition of aqueous solution with temperature increase), but also for their amphiphilic and surface active nature determining the formation of micelles, useful for solubilization of different hydrophobic compounds such as the terpenes and terpenoids contained in essential oils. Thus, these polymers, listed in European and US Pharmacopoeia and approved by FDA, are widely used as solubilizers and gelling agents for various pharmaceutical preparations, including topical hydrogels. The aim of this study was to investigate the posibility of solubilizing oregano essential oil (OEO) in polymeric micelles using polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers to obtain semisolid systems suitable for topical application. A formulation screening was performed, using Pluronic® F-127 in concentration of 20%, Pluronic® L-31, Pluronic® L-61 and Pluronic® L-62 in concentration of 0.5%, 0.8% respectively 1% to obtain the polymeric micelles-based systems. Then, to each selected system, with or without 10% absolute ethanol, 5% or 8% OEO was added. The obtained transparent poloxamer-based hydrogels containing solubilized OEO were further evaluated for pH, rheological characteristics (flow behaviour, viscosity, consistency and spreadability), using consacrated techniques like potentiometric titration, stationary shear flow test, penetrometric method and parallel plate method. Also, in vitro release and permeation of carvacrol from the hydrogels was carried out, using vertical diffusion cells and synthetic hydrophilic membrane and porcine skin respectively. The pH values and rheological features of all tested formulations were in accordance with official requirements for semisolid cutaneous preparations. But, the formulation containing 0.8% Pluronic® L-31, 10% absolute ethanol, 8% OEO and water and the formulation with 1% Pluronic® L-31, 5% OEO and water, produced the highest cumulative amounts of carvacrol released/permeated through the membrane. The present study demonstrated that oregano essential oil can be successfully solubilized in the investigated poloxamer-based hydrogels. These systems can be further investigated as potential topical therapy for cutaneous papillomas. Funding: This research was funded by Project PN-III-P1-1.1-TE2019-0130, Contract number TE47, Romania.Keywords: oregano essential oil, carvacrol, poloxamer, topical hydrogels
Procedia PDF Downloads 1163223 Toxicity of Cry1ac Bacillus thuringiensis against Helicoverpa armigera (Hubner) on Artificial Diet under Laboratory Conditions
Authors: Tahammal Hussain, Khuram Zia, Mumammad Jalal Arif, Megha Parajulee, Abdul Hakeem
Abstract:
The Bioassay on neonate, 2nd and 3rd instar larvae of Helicoverpa armigera (Hubner) were conducted against Bacillus thuringiensis proteins Cry1Ac. Cry1Ac was incorporated into an artificial diet and was serially diluted with distilled water and then mixed with diet at an appropriate temperature of diet. Toxins incorporated prepared diet was poured into Petri-dishes. For controls, distilled water was mixed with the diet. Five toxin doses 0.25, 0.5, 1, 2, and 4 ug / ml and one control were used for each instars of H. armigera 20 larvae were used in each replication and each treatment is replicated four times. LC50 of Cry1Ac against neonate, 2nd and 3rd instar larvae of H. armigera were 0.34, 0.81 and 1.46 ug / ml. So Cry1Ac is more effective against neonate larvae of H .armigera as compared to 2nd and 3rd instar larvae under laboratory conditions.Keywords: B. thuringiensis, Cry1Ac, H. armigera, toxicity
Procedia PDF Downloads 4183222 Morphological Evaluation of Mesenchymal Stem Cells Derived from Adipose Tissue of Dog Treated with Different Concentrations of Nano-Hydroxy Apatite
Authors: K. Barbaro, F. Di Egidio, A. Amaddeo, G. Lupoli, S. Eramo, G. Barraco, D. Amaddeo, C. Gallottini
Abstract:
In this study, we wanted to evaluate the effects of nano-hydroxy apatite (NHA) on mesenchymal stem cells extracted from subcutaneous adipose tissue of the dog. The stem cells were divided into 6 experimental groups at different concentrations of NHA. The comparison was made with a control group of stem cell grown in standard conditions without NHA. After 1 week, the cells were fixed with 10% buffered formalin for 1 hour at room temperature and stained with Giemsa, measured at the inverted optical microscope. The morphological evaluation of the control samples and those treated showed that stem cells adhere to the substrate and proliferate in the presence of nanohydroxy apatite at different concentrations showing no detectable toxic effects.Keywords: nano-hydroxy apatite, adipose mesenchymal stem cells, dog, morphological evaluation
Procedia PDF Downloads 4783221 Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation
Authors: Ngozi Nwogu, Mohammed Kajama, Emmanuel Anyanwu, Edward Gobina
Abstract:
With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas streamKeywords: gas separation, silica membrane, separation factor, membrane layer thickness
Procedia PDF Downloads 4153220 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils
Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo
Abstract:
The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance
Procedia PDF Downloads 1393219 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 3883218 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility
Authors: Prateek Kishore, T. M. Muruganandam
Abstract:
Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.Keywords: method of characteristics, nozzle, supersonic wind tunnel, variable mach number
Procedia PDF Downloads 2983217 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number
Authors: Hichem Boulechfar, Mahfoud Djezzar
Abstract:
Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.Keywords: double diffusive, natural convection, porous media, elliptical annulus
Procedia PDF Downloads 2133216 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process
Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun
Abstract:
This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventionalKeywords: manure composting, odor removal, parameter control, waste recycling
Procedia PDF Downloads 3133215 Experimental Study of Flow Effects of Solid Particles’ Size in Porous Media
Authors: S. Akridiss, E. El Tabach, K. Chetehouna, N. Gascoin, M. S. Kadiri
Abstract:
Transpiration cooling combined to regenerative cooling is a technique that could be used to cool the porous walls of the future ramjet combustion chambers; it consists of using fuel that will flow through the pores of the porous material consisting of the chamber walls, as coolant. However, at high temperature, the fuel is pyrolysed and generates solid coke particles inside the porous materials. This phenomenon can lead to a significant decrease of the material permeability and can affect the efficiency of the cooling system. In order to better understand this phenomenon, an experimental laboratory study was undertaken to determine the transport and deposition of particles in a sintered porous material subjected to steady state flow. The test bench composed of a high-pressure autoclave is used to study the transport of different particle size (35Keywords: experimental study, permeability, porous material, suspended particles
Procedia PDF Downloads 2793214 Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG
Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed
Abstract:
During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas
Procedia PDF Downloads 4863213 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method
Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan
Abstract:
Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.Keywords: hotforging, engine valve, fracture, tooling
Procedia PDF Downloads 2813212 Application of Sorptive Passive Panels for Reducing Indoor Formaldehyde Level: Effect of Environmental Conditions
Authors: Mitra Bahri, Jean Leopold Kabambi, Jacqueline Yakobi-Hancock, William Render, Stephanie So
Abstract:
Reducing formaldehyde concentration in residential buildings is an important challenge, especially during the summer. In this study, a ceiling tile was used as a sorptive passive panel for formaldehyde removal. The performance of this passive panel was evaluated under different environmental conditions. The results demonstrated that the removal efficiency is comprised between 40% and 71%. Change in the level of relative humidity (30%, 50%, and 75%) had a slight positive effect on the sorption capacity. However, increase in temperature from 21 °C to 26 °C led to approximately 7% decrease in the average formaldehyde removal performance. GC/MS and HPLC analysis revealed the formation of different by-products at low concentrations under extreme environmental conditions. These findings suggest that the passive panel selected for this study holds the potential to be used for formaldehyde removal under various conditions.Keywords: formaldehyde, indoor air quality, passive panel, removal efficiency, sorption
Procedia PDF Downloads 2143211 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process
Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak
Abstract:
Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds
Procedia PDF Downloads 2453210 Behaviour of Non-local Correlations and Quantum Information Theoretic Measures in Frustrated Molecular Wheels
Authors: Amit Tribedi
Abstract:
Genuine Quantumness present in Quantum Systems is the resource for implementing Quantum Information and Computation Protocols which can outperform the classical counterparts. These Quantumness measures encompass non-local ones known as quantum entanglement (QE) and quantum information theoretic (QIT) ones, e.g. Quantum Discord (QD). In this paper, some well-known measures of QE and QD in some wheel-like frustrated molecular magnetic systems have been studied. One of the systems has already been synthesized using coordination chemistry, and the other is hypothetical, where the dominant interaction is the spin-spin exchange interaction. Exact analytical methods and exact numerical diagonalization methods have been used. Some counter-intuitive non-trivial features, like non-monotonicity of quantum correlations with temperature, persistence of multipartite entanglement over bipartite ones etc. indicated by the behaviour of the correlations and the QIT measures have been found. The measures, being operational ones, can be used to realize the resource of Quantumness in experiments.Keywords: 0D Magnets, discord, entanglement, frustration
Procedia PDF Downloads 2333209 Medium Composition for the Laboratory Production of Enzyme Fructosyltransferase (FTase)
Authors: O. R. Raimi, A. Lateef
Abstract:
Inoculum developments of A. niger were used for inoculation of medium for submerged fermentation and solid state fermentation. The filtrate obtained were used as sources of the extra-cellular enzymes. The FTase activities and the course of pH in submerged fermentation ranged from 7.53-24.42µ/ml and 4.4-4.8 respectively. The maximum FTase activity was obtained at 48 hours fermentation. In solid state fermentation, FTase activities ranged from 2.41-27.77µ/ml. Using ripe plantain peel and kola nut pod respectively. Both substrates supported the growth of the fungus, producing profuse growth during fermentation. In the control experiment (using kolanut pod) that lack supplementation, appreciable FTase activity of 16.92µ/ml was obtained. The optimum temperature range was 600C. it was also active at broad pH range of 1-9 with optimum obtain at pH of 5.0. FTase was stable within the range of investigated pH showing more than 60% activities. FTase can be used in the production of fructooligosaccharide, a functional food.Keywords: Aspergillus niger, solid state fermentation, kola nut pods, Fructosyltransferase (FTase)
Procedia PDF Downloads 4623208 Ambient Factors in the Perception of Crowding in Public Transport
Authors: John Zacharias, Bin Wang
Abstract:
Travel comfort is increasingly seen as crucial to effecting the switch from private motorized modes to public transit. Surveys suggest that travel comfort is closely related to perceived crowding, that may involve lack of available seating, difficulty entering and exiting, jostling and other physical contacts with strangers. As found in studies on environmental stress, other factors may moderate perceptions of crowding–in this case, we hypothesize that the ambient environment may play a significant role. Travel comfort was measured by applying a structured survey to randomly selected passengers (n=369) on 3 lines of the Beijing metro on workdays. Respondents were standing with all seats occupied and with car occupancy at 14 levels. A second research assistant filmed the metro car while passengers were interviewed, to obtain the total number of passengers. Metro lines 4, 6 and 10 were selected that travel through the central city north-south, east-west and circumferentially. Respondents evaluated the following factors: crowding, noise, smell, air quality, temperature, illumination, vibration and perceived safety as they experienced them at the time of interview, and then were asked to rank these 8 factors according to their importance for their travel comfort. Evaluations were semantic differentials on a 7-point scale from highly unsatisfactory (-3) to highly satisfactory (+3). The control variables included age, sex, annual income and trip purpose. Crowding was assessed most negatively, with 41% of the scores between -3 and -2. Noise and air quality were also assessed negatively, with two-thirds of the evaluations below 0. Illumination was assessed most positively, followed by crime, vibration and temperature, all scoring at indifference (0) or slightly positive. Perception of crowding was linearly and positively related to the number of passengers in the car. Linear regression tested the impact of ambient environmental factors on perception of crowding. Noise intensity accounted for more than the actual number of individuals in the car in the perception of crowding, with smell also contributing. Other variables do not interact with the crowding variable although the evaluations are distinct. In all, only one-third of the perception of crowding (R2=.154) is explained by the number of people, with the other ambient environmental variables accounting for two-thirds of the variance (R2=.316). However, when ranking the factors by their importance to travel comfort, perceived crowding made up 69% of the first rank, followed by noise at 11%. At rank 2, smell dominates (25%), followed by noise and air quality (17%). Commuting to work induces significantly lower evaluations of travel comfort with shopping the most positive. Clearly, travel comfort is particularly important to commuters. Moreover, their perception of crowding while travelling on metro is highly conditioned by the ambient environment in the metro car. Focussing attention on the ambient environmental conditions of the metro is an effective way to address the primary concerns of travellers with overcrowding. In general, the strongly held opinions on travel comfort require more attention in the effort to induce ridership in public transit.Keywords: ambient environment, mass rail transit, public transit, travel comfort
Procedia PDF Downloads 2663207 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach
Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou
Abstract:
In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering
Procedia PDF Downloads 1073206 Computational Analysis on Thermal Performance of Chip Package in Electro-Optical Device
Authors: Long Kim Vu
Abstract:
The central processing unit in Electro-Optical devices is a Field-programmable gate array (FPGA) chip package allowing flexible, reconfigurable computing but energy consumption. Because chip package is placed in isolated devices based on IP67 waterproof standard, there is no air circulation and the heat dissipation is a challenge. In this paper, the author successfully modeled a chip package which various interposer materials such as silicon, glass and organics. Computational fluid dynamics (CFD) was utilized to analyze the thermal performance of chip package in the case of considering comprehensive heat transfer modes: conduction, convection and radiation, which proposes equivalent heat dissipation. The logic chip temperature varying with time is compared between the simulation and experiment results showing the excellent correlation, proving the reasonable chip modeling and simulation method.Keywords: CFD, FPGA, heat transfer, thermal analysis
Procedia PDF Downloads 1883205 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane
Authors: N. Hasbullah, K. A. Sekak
Abstract:
The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers
Procedia PDF Downloads 3133204 Microwave Assisted Foam-Mat Drying of Guava Pulp
Authors: Ovais S. Qadri, Abhaya K. Srivastava
Abstract:
Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.Keywords: foam mat drying, foam mat guava, guava powder, microwave drying
Procedia PDF Downloads 3353203 Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor
Authors: Nam Chol Yu, GyongIl Chu, HoJong Ri
Abstract:
Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.Keywords: recombination center level, lifetime, carrier lifetime control, Gold, Platinum, Silicon
Procedia PDF Downloads 75