Search results for: carbon therapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4898

Search results for: carbon therapy

698 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 372
697 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC

Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin

Abstract:

Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.

Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis

Procedia PDF Downloads 405
696 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug

Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.

Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility

Procedia PDF Downloads 564
695 A Versatile Standing Cum Sitting Device for Rehabilitation and Standing Aid for Paraplegic Patients

Authors: Sasibhushan Yengala, Nelson Muthu, Subramani Kanagaraj

Abstract:

The abstract reports on the design related to a modular and affordable standing cum sitting device to meet the requirements of paraplegic patients of the different physiques. Paraplegic patients need the assistance of an external arrangement to the lower limbs and trunk to help patients adopt the correct posture while standing abreast gravity. This support can be from a tilt table or a standing frame which the patient can use to stay in a vertical posture. Standing frames are devices fitting to support a person in a weight-bearing posture. Commonly, these devices support and lift the end-user in shifting from a sitting position to a standing position. The merits of standing for a paraplegic patient with a spinal injury are numerous. Even when there is limited control on muscles that ordinarily support the user using the standing frame in a vertical position, the standing stance improves the blood pressure, increases bone density, improves resilience and scope of motion, and improves the user's feelings of well-being by letting the patient stand. One limitation with standing frames is that these devices are typically function definitely; cannot be used for different purposes. Therefore, users are often compelled to purchase more than one of these devices, each being purposefully built for definite activities. Another concern frequent in standing frames is manoeuvrability; it is crucial to provide a convenient adjustment scope for all users. Thus, there is a need to provide a standing frame with multiple uses that can be economical for a larger population. There is also a need to equip added readjustment means in a standing frame to lessen the shear and to accommodate a broad range of users. The proposed Versatile Standing cum Sitting Device (VSD) is designed to change from standing to a comfortable sitting position using a series of mechanisms. First, a locking mechanism is provided to lock the VSD in a standing stance. Second, a dampening mechanism is provided to make sure that the VSD shifts from a standing to a sitting position gradually when the lock mechanism gets disengaged. An adjustment option is offered for the height of the headrest via the use of lock knobs. This device can be used in clinics for rehabilitation purposes irrespective of patient's anthropometric data due to its modular adjustments. It can facilitate the patient's daily life routine while in therapy and giving the patient the comfort to sit when tired. The device also provides the availability of rehabilitation to a common person.

Keywords: paraplegic, rehabilitation, spinal cord injury, standing frame

Procedia PDF Downloads 191
694 Entertainment-Education for the Prevention & Intervention of Eating Disorders in Adolescents

Authors: Tracey Lion-Cachet

Abstract:

Eating disorders typically manifest in adolescence and are notoriously difficult to treat. There are two notable reasons for this. Firstly, research consistently demonstrates that early intervention is a critical mediator of prognosis, with early intervention leading to a better prognosis. However, because eating disorders do not originate as full-syndrome diagnoses but rather as prodromal cases, they often go undetected; by the time symptoms meet diagnostic criteria, they have become recalcitrant. Another interrelated issue is motivation to change. Research demonstrates that in the early stages of an eating disorder, adolescents are highly resistant to change, and motivation increases only once symptoms have shifted from egosyntonic to egodystonic in nature. The purpose of this project was to design a prevention model based on the social psychology paradigm of Entertainment-Education, which embeds messages within the genre of film as a means of affecting change. The resulting project was a narrative screenplay targeting teenagers/young adults from diverse backgrounds. The goals of the project were to create a film script that, if ultimately made into a film, could serve to: 1) interrupt symptom progression and improve prognosis through early intervention; 2) incorporate techniques from third-wave cognitive behavioral treatment models, acceptance and commitment therapy (ACT) and rational recovery (RR), with a focus on the effects of mindfulness as a means of informing recovery; 3) target issues to do with motivation to change by shifting the perception of eating disorders from culturally specific psychiatric illnesses to habit-based brain wiring issues. Nine licensed clinicians were asked to evaluate two excerpts taken from the final script. They subsequently provided feedback on a Likert-scale, which assessed whether the script had achieved its goals. Overall, evaluators agreed that the project’s etiological and intervention models have the potential to inspire change and serve as an effective means of prevention and treatment of eating disorders. However, one-third of the evaluators did not find the content developmentally appropriate. This is a notable limitation to the study and will need to be addressed in the larger script before the final project can potentially be targeted to a teenage and young adult audience.

Keywords: adolescents, eating disorders, pediatrics, entertainment-education, mindfulness-based intervention, prevention

Procedia PDF Downloads 67
693 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 324
692 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 124
691 Energy Efficient Retrofitting and Optimization of Dual Mixed Refrigerant Natural Gas Liquefaction Process

Authors: Muhammad Abdul Qyyum, Kinza Qadeer, Moonyong Lee

Abstract:

Globally, liquefied natural gas (LNG) has drawn interest as a green energy source in comparison with other fossil fuels, mainly because of its ease of transport and low carbon dioxide emissions. It is expected that demand for LNG will grow steadily over the next few decades. In addition, because the demand for clean energy is increasing, LNG production facilities are expanding into new natural gas reserves across the globe. However, LNG production is an energy and cost intensive process because of the huge power requirements for compression and refrigeration. Therefore, one of the major challenges in the LNG industry is to improve the energy efficiency of existing LNG processes through economic and ecological strategies. The advancement in expansion devices such as two-phase cryogenic expander (TPE) and cryogenic hydraulic turbine (HT) were exploited for energy and cost benefits in natural gas liquefaction. Retrofitting the conventional Joule–Thompson (JT) valve with TPE and HT have the potential to improve the energy efficiency of LNG processes. This research investigated the potential feasibility of the retrofitting of a dual mixed refrigerant (DMR) process by replacing the isenthalpic expansion with isentropic expansion corresponding to energy efficient LNG production. To fully take the potential benefit of the proposed process retrofitting, the proposed DMR schemes were optimized by using a Coggins optimization approach, which was implemented in Microsoft Visual Studio (MVS) environment and linked to the rigorous HYSYS® model. The results showed that the required energy of the proposed isentropic expansion based DMR process could be saved up to 26.5% in comparison with the conventional isenthalpic based DMR process using the JT valves. Utilization of the recovered energy into boosting the natural gas feed pressure could further improve the energy efficiency of the LNG process up to 34% as compared to the base case. This work will help the process engineers to overcome the challenges relating to energy efficiency and safety concerns of LNG processes. Furthermore, the proposed retrofitting scheme can also be implemented to improve the energy efficiency of other isenthalpic expansion based energy intensive cryogenic processes.

Keywords: cryogenic liquid turbine, Coggins optimization, dual mixed refrigerant, energy efficient LNG process, two-phase expander

Procedia PDF Downloads 138
690 Comparison of Yb and Tm-Fiber Laser Cutting Processes of Fiber Reinforced Plastics

Authors: Oktay Celenk, Ugur Karanfil, Iskender Demir, Samir Lamrini, Jorg Neumann, Arif Demir

Abstract:

Due to its favourable material characteristics, fiber reinforced plastics are amongst the main topics of all actual lightweight construction megatrends. Especially in transportation trends ranging from aeronautics over the automotive industry to naval transportation (yachts, cruise liners) the expected economic and environmental impact is huge. In naval transportation components like yacht bodies, antenna masts, decorative structures like deck lamps, light houses and pool areas represent cheap and robust solutions. Commercially available laser tools like carbon dioxide gas lasers (CO₂), frequency tripled solid state UV lasers, and Neodymium-YAG (Nd:YAG) lasers can be used. These tools have emission wavelengths of 10 µm, 0.355 µm, and 1.064 µm, respectively. The scientific goal is first of all the generation of a parameter matrix for laser processing of each used material for a Tm-fiber laser system (wavelength 2 µm). These parameters are the heat affected zone, process gas pressure, work piece feed velocity, intensity, irradiation time etc. The results are compared with results obtained with well-known material processing lasers, such as a Yb-fiber lasers (wavelength 1 µm). Compared to the CO₂-laser, the Tm-laser offers essential advantages for future laser processes like cutting, welding, ablating for repair and drilling in composite part manufacturing (components of cruise liners, marine pipelines). Some of these are the possibility of beam delivery in a standard fused silica fiber which enables hand guided processing, eye safety which results from the wavelength, excellent beam quality and brilliance due to the fiber nature. There is one more feature that is economically absolutely important for boat, automotive and military projects manufacturing that the wavelength of 2 µm is highly absorbed by the plastic matrix and thus enables selective removal of it for repair procedures.

Keywords: Thulium (Tm) fiber laser, laser processing of fiber-reinforced plastics (FRP), composite, heat affected zone

Procedia PDF Downloads 185
689 Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.

Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure

Procedia PDF Downloads 94
688 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 223
687 Water Footprint for the Palm Oil Industry in Malaysia

Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz

Abstract:

Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.

Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method

Procedia PDF Downloads 156
686 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 81
685 Effects of Lipoic Acid Supplementation on Activities of Cyclooxygenases and Levels of Prostaglandins E2 and F2 Alpha Metabolites in the Offspring of Rats with Streptozocin-Induced Diabetes

Authors: H. Y. Al-Matubsi, G. A. Oriquat, M. Abu-Samak, O. A. Al Hanbali, M. Salim

Abstract:

Background: Uncontrolled diabetes mellitus (DM) is an etiological factor for recurrent pregnancy loss and major congenital malformations in the offspring. Antioxidant therapy has been advocated to overcome the oxidant-antioxidant disequilibrium inherent in diabetes. The aims of this study were to evaluate the protective effect of lipoic acid (LA) on fetal outcome and to elucidate changes that may be involved in the mechanism(s) implicit diabetic fetopathy. Methods: Female rats were rendered hyperglycemic using streptozocin and then mated with normal male rat. Pregnant non-diabetic (group1; n=9; and group2; n=7) or pregnant diabetic (group 3; n=10; and group 4; n=8) rats were treated daily with either lipoic acid (LA) (30 mg/kg body weight; groups 2 and 4) or vehicle (groups 1 and 3) between gestational days 0 and 15. On day 15 of gestation, the rats were sacrificed, and the fetuses, placentas and membranes dissected out of the uterine horns. Following morphological examination, the fetuses, placentas and membranes were homogenized, and used to measure cyclooxygenases (COX) activities and metabolisms of prostaglandin (PG) E2 (PGEM) and PGF2 (PGFM) levels. Maternal liver and plasma total glutathione levels were also determined. Results: Supplementation of diabetic rats with LA was found to significantly (P<0.05) reduce resorption rates in diabetic rats and increased mean fetal weight compared to diabetic group. Treatment of diabetic rats with LA leads to a significant (P<0.05) increase in liver and plasma total glutathione, in comparison with diabetic rats. Decreased levels of PGEM and elevated levels of PGFM in the fetuses, placentas and membranes were characteristic of experimental diabetic gestation associated with malformation. LA treatment to diabetic mothers failed to normalize levels of PGEM to the non-diabetic control rats. However, the levels of PGEM in malformed fetuses from LA-treated diabetic mothers was significantly (P < 0.05) higher than those in malformed fetuses from diabetic rats. Conclusions: We conclude that LA can reduce congenital malformations in the offspring of diabetic rats at day 15 of gestation. However, LA treatment did not completely prevent the occurrence of malformations, other factors, such as arachidonic acid deficiency and altered prostaglandin metabolismmay be involved in the pathogenesis of diabetes-induced congenital malformations.

Keywords: diabetes, lipoic acid, pregnancy, prostaglandins

Procedia PDF Downloads 252
684 Effects of Application of Rice Husk Charcoal-Coated Urea and Rice Straw Compost on Growth, Yield, and Soil Properties of Rice

Authors: D. A. S. Gamage, B. F. A Basnayake, W. A. J. M. de Costa

Abstract:

Rice is one of the world’s most important cereals. Increasing food production both to meet in-country requirements and to help overcome food crises is one of the major issues facing Sri Lanka today. However, productive land is limited and has mostly been utilized either for food crop production or other uses. Agriculture plays an important and strategic role in the performance of Sri Lankan national economy. A variety of modern agricultural inputs have been introduced, namely ploughs and harvesters, pesticides, fertilizers and lime. Besides, there are several agricultural institutions developing and updating the management of agricultural sector. Modern agricultural inputs cooperate as a catalyst in raising the productivity. However, in the eagerness of gaining profits from the efficient and productive techniques, this modern agricultural input has affected the environment and living things especially those which have been blended from various chemical substance. The increased pressure to maintain a high level of rice output for consumption has resulted in increased use of pesticides and inorganic fertilizer on rice fields in Sri Lanka. The application of inorganic fertilizer has become a burdened to the country in many ways. The excessive reuse of the ground water resources with a considerable application of organic and chemical fertilizers will lead to a deterioration of the quality and quantity of water. Biochar is a form of charcoal produced through the heating of natural organic materials. It has received significant attention recently for its potential as a soil conditioner, a fertilizer and as a means of storing carbon in a sustainable manner. It is the best solution for managing the agricultural wastes while providing a useful product for increasing agricultural productivity and protecting the environment. The objective of this study was to evaluate rice husk charcoal coated urea as a slow releasing fertilizer and compare the total N, P, K, organic matter in soil and yield of rice production.

Keywords: biochar, paddy husk, soil conditioner, rice straw compost

Procedia PDF Downloads 341
683 Excavation of Phylogenetically Diverse Bioactive Actinobacteria from Unexplored Regions of Sundarbans Mangrove Ecosystem for Mining of Economically Important Antimicrobial Compounds

Authors: Sohan Sengupta, Arnab Pramanik, Abhrajyoti Ghosh, Maitree Bhattacharyya

Abstract:

Newly emerged phyto-pathogens and multi drug resistance have been threating the world for last few decades. Actinomycetes, the most endowed group of microorganisms isolated from unexplored regions of the world may be the ultimate solution to these problems. Thus the aim of this study was to isolate several bioactive actinomycetes strains capable of producing antimicrobial secondary metabolite from Sundarbans, the only mangrove tiger land of the world. Fifty four actinomycetes were isolated and analyzed for antimicrobial activity against fifteen test organisms including three phytopathogens. Nine morphologically distinct and biologically active isolates were subjected to polyphasic identification study. 16s rDNA sequencing indicated eight isolates to reveal maximum similarity to the genus streptomyces, whereas one isolate presented only 93.57% similarity with Streptomyces albogriseolus NRRL B-1305T. Seventy-one carbon sources and twenty-three chemical sources utilization assay revealed their metabolic relatedness. Among these nine isolates three specific strains were found to have notably higher degree of antimicrobial potential effective in a broader range including phyto-pathogenic fungus. PCR base whole genome screen for PKS and NRPS genes, confirmed the occurrence of bio-synthetic gene cluster in some of the isolates for novel antibiotic production. Finally the strain SMS_SU21, which showed antimicrobial activity with MIC value of 0.05 mg ml-1and antioxidant activity with IC50 value of 0.242±0.33 mg ml-1 was detected to be the most potential one. True prospective of this strain was evaluated utilizing GC-MS and the bioactive compound responsible for antimicrobial activity was purified and characterized. Rare bioactive actinomycetes were isolated from unexplored heritage site. Diversity of the biosynthetic gene cluster for antimicrobial compound production has also been evaluated. Antimicrobial compound SU21-C has been identified and purified which is active against a broad range of pathogens.

Keywords: actinomycetes, sundarbans, antimicrobial, pks nrps, phyto-pathogens, GC-MS

Procedia PDF Downloads 492
682 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter

Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto

Abstract:

The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.

Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution

Procedia PDF Downloads 368
681 Level of Caregiver Burden: A Study of Caregivers of Stroke Survivors at CRP in Bangladesh

Authors: Yeasir Arafat Alve, Nazmun Nahar, Salma BeguM

Abstract:

Introduction / Rationale: Caregivers of stroke survivors have experienced financial, emotional, physical and mental anxiety and have influence of family bonding and social customs, where 80% of caregivers were women and majority of the patients were cared for by immediate family members for example a spouse, son/daughter, son-in-law, daughter-in-law, siblings and they are significantly feel burden as a caregiver. In Bangladeshi context, there has a limitation of knowledge about the level of caregiver burden. This study could be suggested the health professional to focus on the care giving stress to provide a better support to them and also it will be advisable to provide equivalent services for caregivers and their families. Objectives: The study finds out the socio-demographic image of caregivers of stroke survivors in Bangladesh as well as discovers the level of burden of caregiver of stroke survivor in relation to general strain, isolation, disappointment, emotional involvement and environment. The study will find out the association between level of burden among caregivers and onset of stroke of survivors & duration of care giving. As well as to determine the association between level of burden among caregivers and caregiver’s age, gender, occupation and caregiver’s relationship with stroke survivors. Method / Approach: The study is a non experimental cross-sectional study design where 151 participants were selected through purposive comprehensive sampling. Data were selected from occupational therapy outdoor and stroke rehab unit, CRP (Savar & Mirpur) where using the Caregiver Burden Scale (a structured questionnaire) with face to face interview. Results: Most of the caregivers (78.8%) of stroke survivors faced moderate level of burden in general strain (37.7%), isolation (27.2%) but in case of disappointment (60.3%) feel higher burden and lower burden in emotional involvement (9.9%) and environment (0.7%). Caregiver burden level was significantly associated with caregivers’ age (P=0.006), sex (P=0.002), occupation (p= 0.04), relationship with stroke survivors (P=0.02), care giving duration (P=0.000), care giving hours (P=0.009), and onset of stroke (P=0.000) of stroke survivors. Conclusion: The study findings revealed that most of the caregivers faced moderate burden where no environmental burden for them, this is possibly in case of Bangladeshi culture where people hospitable. Through this study, it was also found that there is a possibility to have the higher burden. Finally, it is being also suggested that appropriate advice and support may preserve care giving which eventually enables the survivors to live a longer and more fulfilling life in the community.

Keywords: caregiver, level of caregiver burden, stroke survivor, stroke rehab unit

Procedia PDF Downloads 293
680 Comparison of Two Strategies in Thoracoscopic Ablation of Atrial Fibrillation

Authors: Alexander Zotov, Ilkin Osmanov, Emil Sakharov, Oleg Shelest, Aleksander Troitskiy, Robert Khabazov

Abstract:

Objective: Thoracoscopic surgical ablation of atrial fibrillation (AF) includes two technologies in performing of operation. 1st strategy used is the AtriCure device (bipolar, nonirrigated, non clamping), 2nd strategy is- the Medtronic device (bipolar, irrigated, clamping). The study presents a comparative analysis of clinical outcomes of two strategies in thoracoscopic ablation of AF using AtriCure vs. Medtronic devices. Methods: In 2 center study, 123 patients underwent thoracoscopic ablation of AF for the period from 2016 to 2020. Patients were divided into two groups. The first group is represented by patients who applied the AtriCure device (N=63), and the second group is - the Medtronic device (N=60), respectively. Patients were comparable in age, gender, and initial severity of the condition. Among the patients, in group 1 were 65% males with a median age of 57 years, while in group 2 – 75% and 60 years, respectively. Group 1 included patients with paroxysmal form -14,3%, persistent form - 68,3%, long-standing persistent form – 17,5%, group 2 – 13,3%, 13,3% and 73,3% respectively. Median ejection fraction and indexed left atrial volume amounted in group 1 – 63% and 40,6 ml/m2, in group 2 - 56% and 40,5 ml/m2. In addition, group 1 consisted of 39,7% patients with chronic heart failure (NYHA Class II) and 4,8% with chronic heart failure (NYHA Class III), when in group 2 – 45% and 6,7%, respectively. Follow-up consisted of laboratory tests, chest Х-ray, ECG, 24-hour Holter monitor, and cardiopulmonary exercise test. Duration of freedom from AF, distant mortality rate, and prevalence of cerebrovascular events were compared between the two groups. Results: Exit block was achieved in all patients. According to the Clavien-Dindo classification of surgical complications fraction of adverse events was 14,3% and 16,7% (1st group and 2nd group, respectively). Mean follow-up period in the 1st group was 50,4 (31,8; 64,8) months, in 2nd group - 30,5 (14,1; 37,5) months (P=0,0001). In group 1 - total freedom of AF was in 73,3% of patients, among which 25% had additional antiarrhythmic drugs (AADs) therapy or catheter ablation (CA), in group 2 – 90% and 18,3%, respectively (for total freedom of AF P<0,02). At follow-up, the distant mortality rate in the 1st group was – 4,8%, and in the 2nd – no fatal events. Prevalence of cerebrovascular events was higher in the 1st group than in the 2nd (6,7% vs. 1,7% respectively). Conclusions: Despite the relatively shorter follow-up of the 2nd group in the study, applying the strategy using the Medtronic device showed quite encouraging results. Further research is needed to evaluate the effectiveness of this strategy in the long-term period.

Keywords: atrial fibrillation, clamping, ablation, thoracoscopic surgery

Procedia PDF Downloads 98
679 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2).

Keywords: limestone, particle size distribution, slag, ternary cement

Procedia PDF Downloads 116
678 Humanistic Psychology Workshop to Increase Psychological Well-Being

Authors: Nidia Thalia Alva Rangel, Ferran Padros Blazquez, Ma. Ines Gomez Del Campo Del Paso

Abstract:

Happiness has been since antiquity a concept of interest around the world. Positive psychology is the science that begins to study happiness in a more precise and controlled way, obtaining wide amount of research which can be applied. One of the central constructs of Positive Psychology is Carol Ryff’s psychological well-being model as eudaimonic happiness, which comprehends six dimensions: autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self-acceptance. Humanistic psychology is a clear precedent of Positive Psychology, which has studied human development topics and it features a great variety of intervention techniques nevertheless has little evidence with controlled research. Therefore, the present research had the aim to evaluate the efficacy of a humanistic intervention program to increase psychological well-being in healthy adults through a mixed methods study. Before and after the intervention, it was applied Carol Ryff’s psychological well-being scale (PWBS) and the Symptom Check List 90 as pretest and posttest. In addition, a questionnaire of five open questions was applied after each session. The intervention program was designed in experiential workshop format, based on the foundational attitudes defined by Carl Rogers: congruence, unconditional positive regard and empathy, integrating humanistic intervention strategies from gestalt, psychodrama, logotherapy and psychological body therapy, with the aim to strengthen skills in the six dimensions of psychological well-being model. The workshop was applied to six volunteer adults in 12 sessions of 2 hours each. Finally, quantitative data were analyzed with Wilcoxon statistic test through the SPSS program, obtaining as results differences statistically significant in pathology symptoms between prettest and postest, also levels of dimensions of psychological well-being were increased, on the other hand for qualitative strand, by open questionnaires it showed how the participants were experiencing the techniques and changing through the sessions. Thus, the humanistic psychology program was effective to increase psychological well-being. Working to promote well-being prompts to be an effective way to reduce pathological symptoms as a secondary gain. Experiential workshops are a useful tool for small groups. There exists the need for research to count with more evidence of humanistic psychology interventions in different contexts and impulse the application of Positive Psychology knowledge.

Keywords: happiness, humanistic psychology, positive psychology, psychological well-being, workshop

Procedia PDF Downloads 404
677 Identifying Physical and Psycho-Social Issues Facing Breast Cancer Survivors after Definitive Treatment for Early Breast Cancer: A Nurse-Led Clinic Model

Authors: A. Dean, M. Pitcher, L. Storer, K. Shanahan, I. Rio, B. Mann

Abstract:

Purpose: Breast cancer survivors are at risk of specific physical and psycho-social issues, such as arm swelling, fatigue, and depression. Firstly, we investigate symptoms reported by Australia breast cancer survivors upon completion of definitive treatment. Secondly, we evaluate the appropriateness and effectiveness of a multi-centre pilot program nurse-led clinic to identify these issues and make timely referrals to available services. Methods: Patients post-definitive treatment (excluding ongoing hormonal therapy) for early breast cancer or ductal carcinoma in situ were invited to participate. An hour long appointment with a breast care nurse (BCN) was scheduled. In preparation, patients completed validated quality-of-life surveys (FACT-B, Menopause Rating Scale, Distress Thermometer). During the appointment, issues identified in the surveys were addressed and referrals to appropriate services arranged. Results: 183 of 274 (67%) eligible patients attended a nurse-led clinic. Mean age 56.8 years (range 29-87 years), 181/183 women, 105/183 post-menopausal. 96 (55%) participants reported significant level of distress; 31 (18%) participants reported extreme distress or depression. Distress stemmed from a lack of energy (56/175); poor quality of sleep (50/176); inability to work or participate in household activities (35/172) and problems with sex life (28/89). 166 referrals were offered; 94% of patients accepted the referrals. 65% responded to a follow-up survey: the majority of women either strongly agreed or agreed that the BCN was overwhelmingly supportive, helpful in making referrals, and compassionate towards them. 39% reported making lifestyle changes as a result of the BCN. Conclusion: Breast cancer survivors experience a unique set of challenges, including low mood, difficulty sleeping, problems with sex life and fear of disease recurrence. The nurse-led clinic model is an appropriate and effective method to ensure physical and psycho-social issues are identified and managed in a timely manner. This model empowers breast cancer survivors with information about their diagnosis and available services.

Keywords: early breast cancer, survivorship, breast care nursing, oncology nursing and cancer care

Procedia PDF Downloads 388
676 Case Report on Sepsis by Alpha-Hemolytic Streptococcus and Mannheimia haemolytica in Neonate Dogs

Authors: Maria L. G. Lourenco, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado

Abstract:

Neonatal sepsis is a systemic response of acute infection by bacteria that may lead to high mortality in a litter. This study aims to report a case of sepsis by alpha-hemolytic Streptococcus and Mannheimia haemolytica in neonate dogs. A pregnant, mixed-breed bitch at approximately the 60th day of pregnancy was admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, and subjected to a c-section due to uterine atony and fetuses no heartbeats on the ultrasound examination. The mother presented leukopenia of 1.6 thousand leukocytes, and there was no other information regarding previous clinical history. Among the offspring, four were stillborn, and five were born alive. On clinical examination, neonates weighed between 312 and 384 grams. Reflexes were present, and the newborn's body temperature was between 89.9 ºF and 96.4 ºF. Neonates also presented clinical signs of neonatal infection: omphalitis, abdomen, and extremities with cyanotic color, hematuria, and diarrhea (meconium). Complementary tests revealed leukopenia. The presence of alpha hemolytic streptococcus and Mannheimia haemolytica was revealed in the bacterial culture. The bacteria were sensitive to cephalosporins and penicillin on the antibiogram. Treatment for sepsis was instituted with the drug ceftriaxone, at a dose of 50 mg per kilogram, administered intravenous (jugular vein). Subsequently administered subcutaneous, every 12 hours, for seven days. Heated fluid therapy was performed, with Ringer lactate, at a dose of 4 ml per 100 grams of weight, intravenous. Heating measures were instituted. Blood plasma was also administered, at a dose of 2 mL per 100 grams of weight, administered subcutaneous, as a source of passive immunity. A maternal milk substitute was instituted, and lactation was discontinued since the mother was unable to nurse due to the infection. The mother was neutered during the c-section and treated with ceftriaxone (50 mg/kg). After seven days, the newborns presented normal clinical signs and no alterations in the hemogram. Early diagnosis and intervention were essential for the survival of these patients.

Keywords: neonatal infection, puppies, bacteria, newborn

Procedia PDF Downloads 107
675 Detection and Identification of Antibiotic Resistant Bacteria Using Infra-Red-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have an important role in controlling illness associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing like disk diffusion are time-consuming and other method including E-test, genotyping are relatively expensive. Fourier transform infrared (FTIR) microscopy is rapid, safe, and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 550 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 85% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E. coli, FTIR, multivariate analysis, susceptibility

Procedia PDF Downloads 249
674 Effect of Non-Regulated pH on the Dynamics of Dark Fermentative Biohydrogen Production with Suspended and Immobilized Cell Culture

Authors: Joelle Penniston, E. B. Gueguim-Kana

Abstract:

Biohydrogen has been identified as a promising alternative to the use of non-renewable fossil reserves, owing to its sustainability and non-polluting nature. pH is considered as a key parameter in fermentative biohydrogen production processes, due to its effect on the hydrogenase activity, metabolic activity as well as substrate hydrolysis. The present study assesses the influence of regulating pH on dark fermentative biohydrogen production. Four experimental hydrogen production schemes were evaluated. Two were implemented using suspended cells under regulated pH growth conditions (Sus_R) and suspended and non-regulated pH (Sus_N). The two others regimes consisted of alginate immobilized cells under pH regulated growth conditions (Imm_R) and immobilized and non-pH regulated conditions (Imm_N). All experiments were carried out at 37.5°C with glucose as sole source of carbon. Sus_R showed a lag time of 5 hours and a peak hydrogen fraction of 36% and a glucose degradation of 37%, compared to Sus_N which showed a peak hydrogen fraction of 44% and complete glucose degradation. Both suspended culture systems showed a higher peak biohydrogen fraction compared to the immobilized cell system. Imm_R experiments showed a lag phase of 8 hours, a peak biohydrogen fraction of 35%, while Imm_N showed a lag phase of 5 hours, a peak biohydrogen fraction of 22%. 100% glucose degradation was observed in both pH regulated and non-regulated processes. This study showed that biohydrogen production in batch mode with suspended cells in a non-regulated pH environment results in a partial degradation of substrate, with lower yield. This scheme has been the culture mode of choice for most reported studies in biohydrogen research. The relatively lower slope in pH trend of the non-regulated pH experiment with immobilized cells (Imm_N) compared to Sus_N revealed that that immobilized systems have a better buffering capacity compared to suspended systems, which allows for the extended production of biohydrogen even under non-regulated pH conditions. However, alginate immobilized cultures in flask systems showed some drawbacks associated to high rate of gas production that leads to increased buoyancy of the immobilization beads. This ultimately impedes the release of gas out of the flask.

Keywords: biohydrogen, sustainability, suspended, immobilized

Procedia PDF Downloads 329
673 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 123
672 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia

Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech

Abstract:

A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.

Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components

Procedia PDF Downloads 5
671 Aptamers: A Potential Strategy for COVID-19 Treatment

Authors: Mohamad Ammar Ayass, Natalya Griko, Victor Pashkov, Wanying Cao, Kevin Zhu, Jin Zhang, Lina Abi Mosleh

Abstract:

Respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19). Early evidence pointed at the angiotensin-converting enzyme 2 (ACE-2) expressed on the epithelial cells of the lung as the main entry point of SARS-CoV-2 into the cells. The viral entry is mediated by the binding of the Receptor Binding Domain (RBD) of the spike protein that is expressed on the surface of the virus to the ACE-2 receptor. As the number of SARS-CoV-2 variants continues to increase, mutations arising in the RBD of SARS-CoV-2 may lead to the ineffectiveness of RBD targeted neutralizing antibodies. To address this limitation, the objective of this study is to develop a combination of aptamers that target different regions of the RBD, preventing the binding of the spike protein to ACE-2 receptor and subsequent viral entry and replication. A safe and innovative biomedical tool was developed to inhibit viral infection and reduce the harms of COVID-19. In the present study, DNA aptamers were developed against a recombinant trimer S protein using the Systematic Evolution of Ligands by Exponential enrichment (SELEX). Negative selection was introduced at round number 7 to select for aptamers that bind specifically to the RBD domain. A series of 9 aptamers (ADI2010, ADI2011, ADI201L, ADI203L, ADI205L, ADIR68, ADIR74, ADIR80, ADIR83) were selected and characterized with high binding affinity and specificity to the RBD of the spike protein. Aptamers (ADI25, ADI2009, ADI203L) were able to bind and pull down endogenous spike protein expressed on the surface of SARS-CoV-2 virus in COVID-19 positive patient samples and determined by liquid chromatography- tandem mass spectrometry analysis (LC-MS/MS). LC-MS/MS data confirmed that aptamers can bind to the RBD of the spike protein. Furthermore, results indicated that the combination of the 9 best aptamers inhibited the binding of the purified trimer spike protein to the ACE-2 receptor found on the surface of Vero E6 cells. In the same experiment, the combined aptamers displayed a better neutralizing effect than antibodies. The data suggests that the selected aptamers could be used in therapy to neutralize the effect of the SARS-CoV-2 virus by inhibiting the interaction between the RBD and ACE-2 receptor, preventing viral entry into target cells and therefore blocking viral replication.

Keywords: aptamer, ACE-2 receptor, binding inhibitor, COVID-19, spike protein, SARS-CoV-2, treatment

Procedia PDF Downloads 177
670 Effects of Bedside Rehabilitation of Stroke Patients in Activities and Daily Living Function

Authors: Chiung-Hua Chan, Fang-Yuan Chang, Li-Chi Huang

Abstract:

Stroke patients received regular rehabilitation therapy have measurable advancement in muscle strength, balance, control upper and lower physical activity, walking speed and endurance. This study aimed to investigate the relationship between increases in bedside rehabilitation time and the function of activities and daily living (ADL) in stroke patients. The study was quasi-experimental research design and randomized sampling. The researcher collected 12 stroke patients of stroke patients transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. All participants then were assigned to case group and control group. Data collection was through direct observation of assessment ADL of stroke patients by researchers on Day 1. Case group received regular rehabilitation, exercises in increase of bedside rehabilitation schedules exercise programs by ward nurses. Bedside rehabilitation exercise content with physical, functional and linguistic frequency and time, Control group only give routine rehabilitation schedule care. This was a randomized study performed in 12 patients who were stroke patients and transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. First, the researcher explained the purpose and method of the study to the patients or the family members. All participants completed a consent informed before participation. Patients were randomly assigned to a ‘bedside rehabilitation program’ (BRP) group and a control (C) group. The BRP group received bedside rehabilitation schedules exercise programs by ward nurses. while the C group did not. Both groups received routine rehabilitation schedule. The Functional Independence Measure was used to measure outcome at the first, 14th and the 28th day of rehabilitation ward admitted. Data were analyzed using SPSS 22.0. After implementation of standardized ‘‘bedside rehabilitation program’, the results were: (1) the increasing of bedside rehabilitation had significant difference (p<.05) in promotion ADL function of stroke patients (2) the extend time of the bedside rehabilitation has significant difference (p<.05) in promotion ADL function of stroke patients compared with the control group. This study demonstrated that the ‘bedside rehabilitation program’ enhanced the ADL function in stroke patients. The nurses and rehabilitation ward managers need to understand that the extend time and frequency of rehabilitation provide a chance to enhanced the ADL function of stroke patients.

Keywords: stroke, bedside rehabilitation, functional activity, ADL

Procedia PDF Downloads 127
669 Ytterbium Advantages for Brachytherapy

Authors: S. V. Akulinichev, S. A. Chaushansky, V. I. Derzhiev

Abstract:

High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources.

Keywords: brachytherapy, high, pulse dose rates, radionuclides for therapy, ytterbium sources

Procedia PDF Downloads 480