Search results for: nanoparticle phase change material
16536 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase
Authors: P. Abachi, S. Karami, K. Purazrang
Abstract:
The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering
Procedia PDF Downloads 36316535 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion
Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab
Abstract:
Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.Keywords: air jet loom, twist per inch, twist loss, weft yarn
Procedia PDF Downloads 40216534 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200, in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.Keywords: nanofluid, heat transfer, unsteady flow, forced convection, cross-flow
Procedia PDF Downloads 39716533 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters
Procedia PDF Downloads 14816532 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia
Authors: Wan Noorul Hafilah Binti Wan Ariffin
Abstract:
Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.Keywords: climate change, embankment dam, failure, risk-informed decision making
Procedia PDF Downloads 16516531 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube
Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang
Abstract:
Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM
Procedia PDF Downloads 28116530 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction
Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier
Abstract:
Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing
Procedia PDF Downloads 9316529 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications
Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi
Abstract:
The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties
Procedia PDF Downloads 5216528 An Analysis on Fibre-Reinforced Composite Material Usage on Urban Furniture
Authors: Nilgun Becenen
Abstract:
In this study, the structural properties of composite materials with the plastic matrix, which are used in body parts of urban furniture were investigated. Surfaces of the specimens were observed by scanning electron microscopy (SEM: JSM-5200, JEOL) and Climatic environmental test analyses in laboratory conditions were used to analyze the performance of the composite samples. Climate conditions were determined as follow; 3 hour working under the conditions of -10 ºC heat and 20 % moisture, Heating until 45 ºC for 4 hours, 3 hour work at 45 ºC, 3 hour work under the conditions of 45 ºC heat and 80 % moisture, Cooling at -10 ºC for 4 hours. In this cycle, the atmospheric conditions that urban furniture would be exposed to in the open air were taken into consideration. Particularly, sudden heat changes and humidity effect were investigated. The climate conditions show that performance in Low Temperatures: The endurance isn’t affected, hardness does not change, tensile, bending and impact resistance does not change, the view isn’t affected. It has a high environmental performance.Keywords: fibre-reinforced material, glass fiber, textile science, polymer composites
Procedia PDF Downloads 24916527 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods
Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi
Abstract:
Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS
Procedia PDF Downloads 12816526 InSAR Times-Series Phase Unwrapping for Urban Areas
Authors: Hui Luo, Zhenhong Li, Zhen Dong
Abstract:
The analysis of multi-temporal InSAR (MTInSAR) such as persistent scatterer (PS) and small baseline subset (SBAS) techniques usually relies on temporal/spatial phase unwrapping (PU). Unfortunately, it always fails to unwrap the phase for two reasons: 1) spatial phase jump between adjacent pixels larger than π, such as layover and high discontinuous terrain; 2) temporal phase discontinuities such as time varied atmospheric delay. To overcome these limitations, a least-square based PU method is introduced in this paper, which incorporates baseline-combination interferograms and adjacent phase gradient network. Firstly, permanent scatterers (PS) are selected for study. Starting with the linear baseline-combination method, we obtain equivalent 'small baseline inteferograms' to limit the spatial phase difference. Then, phase different has been conducted between connected PSs (connected by a specific networking rule) to suppress the spatial correlated phase errors such as atmospheric artifact. After that, interval phase difference along arcs can be computed by least square method and followed by an outlier detector to remove the arcs with phase ambiguities. Then, the unwrapped phase can be obtained by spatial integration. The proposed method is tested on real data of TerraSAR-X, and the results are also compared with the ones obtained by StaMPS(a software package with 3D PU capabilities). By comparison, it shows that the proposed method can successfully unwrap the interferograms in urban areas even when high discontinuities exist, while StaMPS fails. At last, precise DEM errors can be got according to the unwrapped interferograms.Keywords: phase unwrapping, time series, InSAR, urban areas
Procedia PDF Downloads 15116525 Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs
Authors: Madhu Sarwan, Ritu Dubey, Sadhna Singh
Abstract:
We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs.Keywords: III-V alloy, elastic moduli, phase transition, semiconductors
Procedia PDF Downloads 54316524 Design of Torque Actuator in Hybrid Multi-DOF System with Taking into Account Magnetic Saturation
Authors: Hyun-Seok Hong, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee
Abstract:
In this paper, proposes to replace the three-phase SPM for tilting by a single-phase torque actuator of the hybrid multi-DOF system. If a three-phase motor for tilting SPM as acting as instantaneous, low electricity use efficiency, controllability is bad disadvantages. It uses a single-phase torque actuator has a high electrical efficiency compared, good controllability. Thus this will have a great influence on the development and practical use of the system. This study designed a single phase torque actuator in consideration of the magnetic saturation. And compared the SPM and FEM analysis and validation through testing of the production model.Keywords: hybrid multi-DOF system, SPM, torque actuator, UAV, drone
Procedia PDF Downloads 61016523 Preparation and Characterization of Lanthanum Aluminate Electrolyte Material for Solid Oxide Fuel Cell
Authors: Onkar Nath Verma, Nitish Kumar Singh, Raghvendra, Pravin Kumar, Prabhakar Singh
Abstract:
The perovskite type electrolyte material LaAlO3 was prepared by solution based auto-combustion method using Al (NO3)3.6H2O, La2O3 with dilute nitrate acid (HNO3) as precursors and citric acid (C6H8O7.H2O) as a fuel. The synthesis protocol gave an easy processing of the LaAlO3 nano-particles. The XRD measurement revealed that the material has single phase with space group R-3c (rhombohedral). Thermal behavior was measured by simultaneous differential thermal analysis and thermo gravimetric analysis (DTA-TGA). The compact pellet density was determined. Also, the surface morphology was studied using scanning electron microscopy (SEM). The conductivity of LaAlO3 was measured employing LCR meter and found to increase with increasing temperature. This increase in conductivity may be attributed to increased mobility of oxide ion.Keywords: perovskite, LaAlO3, XRD, SEM, DTA-TGA, SOFC
Procedia PDF Downloads 50316522 MPC of Single Phase Inverter for PV System
Authors: Irtaza M. Syed, Kaamran Raahemifar
Abstract:
This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.Keywords: phase locked loop, voltage source inverter, single phase inverter, model predictive control, Matlab/Simulink
Procedia PDF Downloads 53216521 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length
Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park
Abstract:
Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile
Procedia PDF Downloads 47516520 One Step Green Synthesis of Silver Nanoparticles and Their Biological Activity
Authors: Samy M. Shaban, Ismail Aiad, Mohamed M. El-Sukkary, E. A. Soliman, Moshira Y. El-Awady
Abstract:
In situ and green synthesis of cubic and spherical silver nanoparticles were developed using sun light as reducing agent in the presence of newly prepared cationic surfactant which acting as capping agents. The morphology of prepared silver nanoparticle was estimated by transmission electron microscope (TEM) and the size distribution determined by dynamic light scattering (DLS). The hydrophobic chain length of the prepared surfactant effect on the stability of the prepared silver nanoparticles as clear from zeta-potential values. Also by increasing chain length of the used capping agent the amount of formed nanoparticle increase as indicated by increasing the absorbance. Both prepared surfactants and surfactants capping silver nanoparticles showed high antimicrobial activity against gram positive and gram-negative bacteria.Keywords: photosynthesis, hexaonal shapes, zetapotential, biological activity
Procedia PDF Downloads 45916519 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 49816518 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 14316517 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis
Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim
Abstract:
In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element
Procedia PDF Downloads 36016516 Exact Phase Diagram of High-TC Superconductors
Authors: Abid Boudiar
Abstract:
We propose a simple model to obtain an exact expression of Tc/(Tc,max) for the temperature-doping phase diagram of superconducting cuprates. We showed that our model predicted most phase diagram scenario. We found the exact special doping points p(opt), p(qcp) and an accurate E(g,max). Some other properties such as the stripes length 100.1°A and the energy gap in cuprates chain 6meV can also be calculated exactly. Another interesting consequence of this simple picture is the new magic numbers and the ability to express everything using a (Tc,p) diagram via the golden ratio.Keywords: superconducting cuprates, phase, pseudogap, hole doping, strips, golden ratio, soliton
Procedia PDF Downloads 47016515 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi
Abstract:
Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS
Procedia PDF Downloads 16016514 0.13-μm CMOS Vector Modulator for Wireless Backhaul System
Authors: J. S. Kim, N. P. Hong
Abstract:
In this paper, a CMOS vector modulator designed for wireless backhaul system based on 802.11ac is presented. A poly phase filter and sign select switches yield two orthogonal signal paths. Two variable gain amplifiers with strongly reduced phase shift of only ±5 ° are used to weight these paths. It has a phase control range of 360 ° and a gain range of -10 dB to 10 dB. The current drawn from a 1.2 V supply amounts 20.4 mA. Using a 0.13 mm technology, the chip die area amounts 1.47x0.75 mm².Keywords: CMOS, phase shifter, backhaul, 802.11ac
Procedia PDF Downloads 38616513 Inoculation of Aerospace Grade Mg-Al-Zn-Mn Cast Magnesium Alloy with Carbon Nanopowder
Authors: Spartak Makovskyi, Volodymir Klochykhin, Valery Zakharchenko, Konstantyn Balushok, Eduard Tsyvirko, Anatoly Shalomeyev
Abstract:
A highly efficient, cost-effective grain refinement technique for ML5 magnesium alloy with a commercially pure carbon nanopowder has been proposed. An experimental casting of testing specimens with incremental additions of a carbon nanopowder (0.001 - 0.1 wt.% ) was performed. It has been found that the carbon nanoparticle inoculation of the alloy structure is efficient in a narrow concentration range. The additions of 0.005-0.01 wt. % the grain refiner in the alloy resulted in a maximum increase of ductility properties (appr. Twofold) and improved tensile strength. However, further expansion of the grain refiner content led to the deterioration of the alloy's mechanical properties. In particular, the introduction of 0.1 wt.% of the nanocarbon and more caused internal defects in the metal. The carbon nanoparticle inoculation is a promising way of improving the properties of the Mg-Al-Zn alloys for critical lightweight aerospace applications on an industrial scale.Keywords: carbon nanopowder, inoculation, melt, tensile strength
Procedia PDF Downloads 20816512 On Phase Based Stereo Matching and Its Related Issues
Authors: András Rövid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD
Procedia PDF Downloads 46816511 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.Keywords: Sn-Zn eutectic alloy, yttrium, FactSage®, microstructure, mechanical properties
Procedia PDF Downloads 46916510 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.Keywords: electrospininng, nanoparticle, polystyrene, ZnO
Procedia PDF Downloads 24016509 A Bundled Approach to Explaining Technological Change: The Case of E-Estonia
Authors: Andrew Adjah Sai, Portia Opoku Boadi
Abstract:
Explaining change is an abstract endeavor. Many management scholars have adopted metaphors to explain change. In this paper, we deal with the drivers of technological change. We use a historical and theoretical approach to review and elaborate on the concepts and context about a specific case. We discuss the limitations of each approach proffered and the implications as a consequence on technological change. We present plurality and multiplicity of perspectives using a socio-technical approach to explain technological change contextually on an organizational level. We show by using our model how technology absorption and diffusion can be accelerated through artefactual institutions to enable social change. The multiplicity of perspectives and plurality of our arguments creates a fine explanation of the e-Estonia case as an example.Keywords: artefactual institutions, e-Estonia, social change, technological trajectories
Procedia PDF Downloads 44816508 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle
Authors: Nilay K. Doshi
Abstract:
A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance
Procedia PDF Downloads 33016507 African Folklore for Critical Self-Reflection, Reflective Dialogue, and Resultant Attitudinal and Behaviour Change: University Students’ Experiences
Authors: T. M. Buthelezi, E. O. Olagundoye, R. G. L. Cele
Abstract:
This article argues that whilst African folklore has mainly been used for entertainment, it also has an educational value that has power to change young people’s attitudes and behavior. The paper is informed by the findings from the data that was generated from 154 university students who were coming from diverse backgrounds. The qualitative data was thematically analysed. Referring to the six steps of the behaviour change model, we found that African Folklore provides relevant cultural knowledge and instills values that enable young people to engage on self-reflection that eventually leads them towards attitudinal changes and behaviour modification. Using the transformative learning theory, we argue that African Folklore in itself is a pedagogical strategy that integrates cultural knowledge, values with entertainment elements concisely enough to take the young people through a transformative phase which encompasses psychological, convictional and life-style adaptation. During data production stage all ethical considerations were observed including obtaining gatekeeper’s permission letter and ethical clearance certificate from the Ethics Committee of the University. The paper recommends that African Folklore approach should be incorporated into the school curriculum particularly in life skills education with aims to change behaviour.Keywords: African folklore, young people, attitudinal, behavior change, university students
Procedia PDF Downloads 263