Search results for: laterally loaded pile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 804

Search results for: laterally loaded pile

474 A Horn Antenna Loaded with FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency selective surface (FSS), horn

Procedia PDF Downloads 434
473 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil

Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab

Abstract:

Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.

Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy

Procedia PDF Downloads 141
472 Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force

Authors: Rabaya Basori, Arup K. Raychaudhuri

Abstract:

In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment.

Keywords: nanowire, dielectrophoretic force, confined growth, controlled diameter, comsol multiphysics simulation

Procedia PDF Downloads 168
471 Comparison of Improvement with Bored Piling and Stone Column in a Selected Area in Kocaeli

Authors: Utkan Mutman, Omer Ayhan

Abstract:

In highway work in a field that is selected in Kocaeli/TURKEY district to the ground improvement and piling is done. In this study, the degree of improvement was observed on the ground after the columns made of stone and bored piles in the field and compared. In this context, improving the ground before and after analysis and solution analysis made with values obtained by the finite element method, which was made Plaxis program. On the improved ground, in order to control of manufactured bored piles, continuity of bored piles and pile load tests were carried out. In addition, the test of load capacity specified in the project is made of stone columns. Test results of the soil improvement were observed to be successful, the results obtained in the field and the results obtained from Plaxis program were compared.

Keywords: bored piling, stone columns, plaxis, soil improvement

Procedia PDF Downloads 278
470 Enhancement of CO2 Capture by Using Cu-Nano-Zeolite Synthesized

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Chi-Hyeon Lee, Jitae Kim

Abstract:

In this study synthesized Cu-nano-zeolite was evaluated for its potential use in CO2 capture. The specific surface area of Cu-nano zeolite was measured as 869.32 m2/g with a pore size of 3.86 nm. The adsorption capacity of CO2 by Cu-nano zeolite was decreased with increasing temperature. The identified adsorption capacity of CO2 by Cu-nano zeolite was 7.16 mmol/g at a temperature of 20 oC and at pressure of 1 atm. The adoption selectivity of CO2 over N2 strongly depend on the temperature and the highest selectivity by Cu-nano zeolite was 50.71 at 20 oC. From analysis of regeneration characteristics of CO2 loaded adsorbent, the percentage removal of CO2 was maintained at more than 78.2 % even after 10 cycles of adsorption-desorption. Based on these result, the Cu-nano zeolite can be used as an effective and economical adsorbent for CO2 capture.

Keywords: CO2 capture, selectivity, Cu-nano zeolite, regeneration.

Procedia PDF Downloads 294
469 Measure the Gas to Dust Ratio Towards Bright Sources in the Galactic Bulge

Authors: Jun Yang, Norbert Schulz, Claude Canizares

Abstract:

Knowing the dust content in the interstellar matter is necessary to understand the composition and evolution of the interstellar medium (ISM). The metal composition of the ISM enables us to study the cooling and heating processes that dominate the star formation rates in our Galaxy. The Chandra High Energy Transmission Grating (HETG) Spectrometer provides a unique opportunity to measure element dust compositions through X-ray edge absorption structure. We measure gas to dust optical depth ratios towards 9 bright Low-Mass X-ray Binaries (LMXBs) in the Galactic Bulge with the highest precision so far. Well calibrated and pile-up free optical depths are measured with the HETG spectrometer with respect to broadband hydrogen equivalent absorption in bright LMXBs: 4U 1636-53, Ser X-1, GX 3+1, 4U 1728-34, 4U 1705-44, GX 340+0, GX 13+1, GX 5-1, and GX 349+2. From the optical depths results, we deduce gas to dust ratios for various silicates in the ISM and present our results for the Si K edge in different lines of sight towards the Galactic Bulge.

Keywords: low-mass X-ray binaries, interstellar medium, gas to dust ratio, spectrometer

Procedia PDF Downloads 126
468 Catalytic Activity Study of Fe, Ti Loaded TUD-1

Authors: Supakorn Tantisriyanurak, Hussaya Maneesuwan, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

TUD-1 is a siliceous mesoporous material with a three-dimensional amorphous structure of random, interconnecting pores, large pore size, high surface area (400-1000 m2/g), hydrothermal stability, and tunable porosity. However, the significant disadvantage of the mesoporous silicates is few catalytic active sites. In this work, a series of bimetallic Fe and Ti incorporated into TUD-1 framework is successfully synthesized by sol–gel method. The synthesized Fe,Ti-TUD-1 is characterized by various techniques. To study the catalytic activity of Fe, Ti–TUD-1, phenol hydroxylation was selected as a model reaction. The amounts of residual phenol and oxidation products were determined by high performance liquid chromatography coupled with UV-detector (HPLC-UV).

Keywords: iron, phenol hydroxylation, titanium, TUD-1

Procedia PDF Downloads 236
467 Structural Performance of a Bridge Pier on Dubious Deep Foundation

Authors: Víctor Cecilio, Roberto Gómez, J. Alberto Escobar, Héctor Guerrero

Abstract:

The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view.

Keywords: dynamic analysis, inelastic models, dubious foundation, bridge pier

Procedia PDF Downloads 114
466 Surgical Prep-Related Burns in Laterally Positioned Hip Procedures

Authors: B. Kenny, M. Dixon, A. Boshell

Abstract:

The use of alcoholic surgical prep was recently introduced into the Royal Newcastle Center for elective procedures. In the past 3 months there have been a significant number of burns believed to be related to ‘pooling’ of this surgical prep in patients undergoing procedures where they are placed in the lateral position with hip bolsters. The aim of the audit was to determine the reason for the burns, analyze what pre-existing factors may contribute to the development of the burns and what can be changed to prevent further burns occurring. All patients undergoing a procedure performed on the hip who were placed in the lateral position with sacral and anterior, superior iliac spine (ASIS) support with ‘bolsters’ were included in the audit. Patients who developed a ‘burn’ were recorded, details of the surgery, demographics, surgical prep used and length of surgery were obtained as well as photographs taken to document the burn. Measures were then taken to prevent further burns and the efficacy was documented. Overall 14 patients developed burns over the ipsilateral ASIS. Of these, 13 were Total Hip Arthroplasty (THA) and 1 was a removal of femoral nail. All patients had Chlorhexidine 0.5% in Alcohol 70% Tinted Red surgical preparation or Betadine Alcoholic Skin Prep (70% etoh). Patients were set up in the standard lateral decubitus position with sacral and bilateral ASIS bolsters with a valband covering. 86% of patients were found to have pre-existing hypersensitivities to various substances. There is very little literature besides a few case reports on surgical prep-related burns. The case reports that do exist are related to the use of tourniquet-related burns and there is no mention in the literature examining ‘bolster’ related burns. The burns are hypothesized to be caused by pooling of the alcoholic solution which is amplified by the use of Valband.

Keywords: arthroplasty, chemical burns, wounds, rehabilitation

Procedia PDF Downloads 278
465 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles

Authors: Jafar Razmi

Abstract:

Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.

Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains

Procedia PDF Downloads 220
464 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity

Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate

Abstract:

An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.

Keywords: Curcumin, chitosan, nanoparticles, anticancer activity

Procedia PDF Downloads 154
463 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers

Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan

Abstract:

PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber.

Keywords: amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile

Procedia PDF Downloads 285
462 Value Engineering and Its Impact on Drainage Design Optimization for Penang International Airport Expansion

Authors: R.M. Asyraf, A. Norazah, S.M. Khairuddin, B. Noraziah

Abstract:

Designing a system at present requires a vital, challenging task; to ensure the design philosophy is maintained in economical ways. This paper perceived the value engineering (VE) approach applied in infrastructure works, namely stormwater drainage. This method is adopted in line as consultants have completed the detailed design. Function Analysis System Technique (FAST) diagram and VE job plan, information, function analysis, creative judgement, development, and recommendation phase are used to scrutinize the initial design of stormwater drainage. An estimated cost reduction using the VE approach of 2% over the initial proposal was obtained. This cost reduction is obtained from the design optimization of the drainage foundation and structural system, where the pile design and drainage base structure are optimized. Likewise, the design of the on-site detention tank (OSD) pump was revised and contribute to the cost reduction obtained. This case study shows that the VE approach can be an important tool in optimizing the design to reduce costs.

Keywords: value engineering, function analysis system technique, stormwater drainage, cost reduction

Procedia PDF Downloads 125
461 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 439
460 Study of the Thermomechanical Behavior of a Concrete Element

Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir

Abstract:

The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.

Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength

Procedia PDF Downloads 286
459 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina

Procedia PDF Downloads 71
458 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications

Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh

Abstract:

Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.

Keywords: peatrics, tracheostomy, ICU, tracheostoma

Procedia PDF Downloads 251
457 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 47
456 Development of Fem Code for 2-D Elasticity Problems Using Quadrilateral and Triangular Elements

Authors: Muhammad Umar Kiani, Waseem Sakawat

Abstract:

This study presents the development of FEM code using Quadrilateral 4-Node (Q4) and Triangular 3-Node (T3) elements. Code is formulated using MATLAB language. Instead of using both elements in the same code, two separate codes are written. Quadrilateral element is difficult to handle directly, that is why natural coordinates (eta, ksi) are used. Due to this, Q4 code includes numerical integration (Gauss quadrature). In this case, complete numerical integration is performed using 2 points. On the other hand, T3 element can be modeled directly, by using direct stiffness approach. Axially loaded element, cantilever (special constraints) and Patch test cases were analyzed using both codes and the results were verified by using Ansys.

Keywords: FEM code, MATLAB, numerical integration, ANSYS

Procedia PDF Downloads 397
455 Applications of Sulfur Nanoparticles: Synthesis and Characterizations

Authors: Sandeep K. Shukla, Roli Jain, Soumitra S. Pande, Archna Pandey

Abstract:

Sulfur nanoparticles were prepared by different methods with different sizes and shapes. When the sulfur is present as nanoparticles they have many practical applications in our life. This research discusses sulfur nanoparticles synthesis, characterizations and applications. With dandruff being a common everyday problem and the market is loaded with antidandruff shampoos and such skin care products, it is obvious to assume resourceful research into this area would be both objective to present scenario and potentially lucrative. Nanoparticles are frequently in use in some very powerful antimicrobial, antifungal cosmetics nowadays, especially silver. To check its antidandruff activity, experiments have been conducted on Malassezia furfur the causal organism for seborrheaic dermatitis or dandruff, which have been cultured for such study in our lab.

Keywords: CTAB surfactant SEM, sulfur nanoparticles (S-NPs), XRD, polymeric surfactant

Procedia PDF Downloads 564
454 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach

Authors: Sourabh Harihar, Henk Jan Verhagen

Abstract:

The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.

Keywords: bamboo, environment, mangrove, rehabilitation

Procedia PDF Downloads 263
453 Adsorption of a Pharmaceutical Pollutant on Activated Carbon of Orange Peels

Authors: Faroudja Mohellebi, Fayrouz Khalida Kies, Moncef Rezzik El Marhoun, Feriel Yahiat

Abstract:

The purpose of this study is to valorize an agro-food waste (orange peels) by its use as an adsorbent in the treatment of water loaded with pharmaceutical micropollutant present in aquatic environments, oxytetracycline. The tests, carried out in batch mode, made it possible to study the influence on the sorptive capacity of calcined orange peels of several parameters: the contact time, the initial concentration of oxytetracycline, the adsorbent dose, and the initial pH of the solution. The pseudo-second-order model is best adapted to represent the adsorption kinetics. The Langmuir model describes the adsorption isotherm of oxytetracycline. The adsorption is favored in a basic environment.

Keywords: adsorption, emerging pollutants, oxytetracycline, water treatment

Procedia PDF Downloads 134
452 Cardiolipin-Incorporated Liposomes Carrying Curcumin and Nerve Growth Factor to Rescue Neurons from Apoptosis for Alzheimer’s Disease Treatment

Authors: Yung-Chih Kuo, Che-Yu Lin, Jay-Shake Li, Yung-I Lou

Abstract:

Curcumin (CRM) and nerve growth factor (NGF) were entrapped in liposomes (LIP) with cardiolipin (CL) to downregulate the phosphorylation of mitogen-activated protein kinases for Alzheimer’s disease (AD) management. AD belongs to neurodegenerative disorder with a gradual loss of memory, yielding irreversible dementia. CL-conjugated LIP loaded with CRM (CRM-CL/LIP) and that with NGF (NGF-CL/LIP) were applied to AD models of SK-N-MC cells and Wistar rats with an insult of β-amyloid peptide (Aβ). Lipids comprising 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (Avanti Polar Lipids, Alabaster, AL), 1',3'-bis[1,2- dimyristoyl-sn-glycero-3-phospho]-sn-glycerol (CL; Avanti Polar Lipids), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy(polyethylene glycol)-2000] (Avanti Polar Lipids), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (Avanti Polar Lipids) and CRM (Sigma–Aldrich, St. Louis, MO) were dissolved in chloroform (J. T. Baker, Phillipsburg, NJ) and condensed using a rotary evaporator (Panchum, Kaohsiung, Taiwan). Human β-NGF (Alomone Lab, Jerusalem, Israel) was added in the aqueous phase. Wheat germ agglutinin (WGA; Medicago AB, Uppsala, Sweden) was grafted on LIP loaded with CRM for (WGA-CRM-LIP) and CL-conjugated LIP loaded with CRM (WGA-CRM-CL/LIP) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Sigma–Aldrich) and N-hydroxysuccinimide (Alfa Aesar, Ward Hill, MA). The protein samples of SK-N-MC cells (American Type Tissue Collection, Rockville, MD) were used for sodium dodecyl sulfate (Sigma–Aldrich) polyacrylamide gel (Sigma–Aldrich) electrophoresis. In animal study, the LIP formulations were administered by intravenous injection via a tail vein of male Wistar rats (250–280 g, 8 weeks, BioLasco, Taipei, Taiwan), which were housed in the Animal Laboratory of National Chung Cheng University in accordance with the institutional guidelines and the guidelines of Animal Protection Committee under the Council of Agriculture of the Republic of China. We found that CRM-CL/LIP could inhibit the expressions of phosphorylated p38 (p-p38), p-Jun N-terminal kinase (p-JNK), and p-tau protein at serine 202 (p-Ser202) to retard the neuronal apoptosis. Free CRM and released CRM from CRM-LIP and CRM-CL/LIP were not in a straightforward manner to effectively inhibit the expression of p-p38 and p-JNK in the cytoplasm. In addition, NGF-CL/LIP enhanced the quantities of p-neurotrophic tyrosine kinase receptor type 1 (p-TrkA) and p-extracellular-signal-regulated kinase 5 (p-ERK5), preventing the Aβ-induced degeneration of neurons. The membrane fusion of NGF-LIP activated the ERK5 pathway and the targeting capacity of NGF-CL/LIP enhanced the possibility of released NGF to affect the TrkA level. Moreover, WGA-CRM-LIP improved the permeation of CRM across the blood–brain barrier (BBB) and significantly reduced the Aβ plaque deposition and malondialdehyde level and increased the percentage of normal neurons and cholinergic function in the hippocampus of AD rats. This was mainly because the encapsulated CRM was protected by LIP against a rapid degradation in the blood. Furthermore, WGA on LIP could target N-acetylglucosamine on endothelia and increased the quantity of CRM transported across the BBB. In addition, WGA-CRM-CL/LIP could be effective in suppressing the synthesis of acetylcholinesterase and reduced the decomposition of acetylcholine for better neurotransmission. Based on the in vitro and in vivo evidences, WGA-CRM-CL/LIP can rescue neurons from apoptosis in the brain and can be a promising drug delivery system for clinical AD therapy.

Keywords: Alzheimer’s disease, β-amyloid, liposome, mitogen-activated protein kinase

Procedia PDF Downloads 316
451 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 335
450 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil

Authors: Mutadi

Abstract:

Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.

Keywords: soft soil, deflection, wall, pipeline

Procedia PDF Downloads 145
449 A Horn Antenna Loaded with SIW FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency-selective surface (FSS), horn antennas

Procedia PDF Downloads 267
448 Full-Wave Analysis of Magnetic Meta-Surfaces for Microwave Component Applications

Authors: Christopher Hardly Joseph, Nicola Pelagalli, Davide Mencarelli, Luca Pierantoni

Abstract:

In this contribution, we report the electromagnetic response of a split ring resonator (SRR) based magnetic metamaterial unit cell in free space nature by means of a full-wave electromagnetic simulation. The effective parameters of these designed structures have been analyzed. The structures have been specifically designed to work at high frequency considering the development of many microwave and lower mm-wave devices. In addition to that, the application of the designed metamaterial structures is also proposed, namely metamaterial loaded planar transmission lines, potentially useful to optimize size and quality factor of circuit components and radiating elements.

Keywords: CPW, Microwave Components, Negative Permeability, Split Ring Resonator (SRR)

Procedia PDF Downloads 151
447 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts

Authors: Velid Demir, Mesut Akgün

Abstract:

The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.

Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification

Procedia PDF Downloads 71
446 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection

Procedia PDF Downloads 54
445 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 66