Search results for: artificial animal intelligence
3453 The Implementation of Animal Welfare for Garut Sheep Fighting Contest in West Java
Authors: Mustopa, Nadya R. Susilo, Rhizal D. Nuva
Abstract:
This study aims to determine the application of animal welfare in Garut sheep fighting contest at West Java. This study conducted by survey and discussion methods with 5 Garut sheep owners in the contest. The animal welfare is going to be proved by observing the condition of the cage, the cleanliness of it, the health of the sheep, feeding and water, also owner treatments for their sheep that will be served as a fighter. Observations made using stable conditions ACRES form with assessment scores ranged from 1 = very poor, 2 = poor, 3 = regular, 4 = good and 5 = very good, animal welfare conditions seen by conducting observations and interviews with garut sheep owners. The result shows that the Garut sheep fighting contest has fulfilled the criteria of animal welfare application. Application of animal welfare principle by the owner of Garut sheep terms of ACRES (Animal Concerns Research and Education Society) below standard, the average score obtained was 1.76 which is mean in a very bad ratings. Besides considering the animal welfare application, sheep owners also do special treatments for their Garut sheep with the purpose to produce fighters that are healthy and strong. So, if the sheep wins in Garut sheep fight contest, it will purchase a high-value prices.Keywords: animal welfare, contest, garut sheep, sheep fighting
Procedia PDF Downloads 2793452 Automating Self-Representation in the Caribbean: AI Autoethnography and Cultural Analysis
Authors: Steffon Campbell
Abstract:
This research explores the potential of using artificial intelligence (AI) autoethnographies to study, document, explore, and understand aspects of Caribbean culture. As a digital research methodology, AI autoethnography merges computer science and technology with ethnography, providing a fresh approach to collecting and analyzing data to generate novel insights. This research investigates how AI autoethnography can best be applied to understanding the various complexities and nuances of Caribbean culture, as well as examining how technology can be a valuable tool for enriching study of the region. By applying AI autoethnography to Caribbean studies, the research aims to produce new and innovative ways of discovering, understanding, and appreciating the Caribbean. The study found that AI autoethnographies can offer a valuable method for exploring Caribbean culture. Specifically, AI autoethnographies can facilitate experiences of self-reflection, facilitate reconciliation with the past, and provide a platform to explore and understand the cultural, social, political, and economic concerns of Caribbean people. Findings also reveal that these autoethnographies can create a space for people to reimagine and reframe the conversation around Caribbean culture by enabling them to actively participate in the process of knowledge creation. The study also finds that AI autoethnography offers the potential for cross-cultural dialogue, allowing participants to connect with one another over cultural considerations and engage in meaningful discourse.Keywords: artificial intelligence, autoethnography, caribbean, culture
Procedia PDF Downloads 283451 Awareness among Medical Students and Faculty about Integration of Artifical Intelligence Literacy in Medical Curriculum
Authors: Fatima Faraz
Abstract:
BACKGROUND: While Artificial intelligence (AI) provides new opportunities across a wide variety of industries, healthcare is no exception. AI can lead to advancements in how the healthcare system functions and improves the quality of patient care. Developing countries like Pakistan are lagging in the implementation of AI-based solutions in healthcare. This demands increased knowledge and AI literacy among health care professionals. OBJECTIVES: To assess the level of awareness among medical students and faculty about AI in preparation for teaching AI basics and data science applications in clinical practice in an integrated medical curriculum. METHODS: An online 15-question semi-structured questionnaire, previously tested and validated, was delivered among participants through convenience sampling. The questionnaire composed of 3 parts: participant’s background knowledge, AI awareness, and attitudes toward AI applications in medicine. RESULTS: A total of 182 students and 39 faculty members from Rawalpindi Medical University, Pakistan, participated in the study. Only 26% of students and 46.2% of faculty members responded that they were aware of AI topics in clinical medicine. The major source of AI knowledge was social media (35.7%) for students and professional talks and colleagues (43.6%) for faculty members. 23.5% of participants answered that they personally had a basic understanding of AI. Students and faculty (60.1%) were interested in AI in patient care and teaching domain. These findings parallel similar published AI survey results. CONCLUSION: This survey concludes interest among students and faculty in AI developments and technology applications in healthcare. Further studies are required in order to correctly fit AI in the integrated modular curriculum of medical education.Keywords: medical education, data science, artificial intelligence, curriculum
Procedia PDF Downloads 1033450 Emotional Artificial Intelligence and the Right to Privacy
Authors: Emine Akar
Abstract:
The majority of privacy-related regulation has traditionally focused on concepts that are perceived to be well-understood or easily describable, such as certain categories of data and personal information or images. In the past century, such regulation appeared reasonably suitable for its purposes. However, technologies such as AI, combined with ever-increasing capabilities to collect, process, and store “big data”, not only require calibration of these traditional understandings but may require re-thinking of entire categories of privacy law. In the presentation, it will be explained, against the background of various emerging technologies under the umbrella term “emotional artificial intelligence”, why modern privacy law will need to embrace human emotions as potentially private subject matter. This argument can be made on a jurisprudential level, given that human emotions can plausibly be accommodated within the various concepts that are traditionally regarded as the underlying foundation of privacy protection, such as, for example, dignity, autonomy, and liberal values. However, the practical reasons for regarding human emotions as potentially private subject matter are perhaps more important (and very likely more convincing from the perspective of regulators). In that respect, it should be regarded as alarming that, according to most projections, the usefulness of emotional data to governments and, particularly, private companies will not only lead to radically increased processing and analysing of such data but, concerningly, to an exponential growth in the collection of such data. In light of this, it is also necessity to discuss options for how regulators could address this emerging threat.Keywords: AI, privacy law, data protection, big data
Procedia PDF Downloads 883449 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward
Authors: Vibhuti Amarnath Madhu Agrawal
Abstract:
Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property
Procedia PDF Downloads 713448 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1303447 Impact of Emotional Intelligence on Job Satisfaction and Organizational Commitment: A Study on Young Doctors of Pakistan
Authors: Aisha Khalid, Talha Aftab, Fareeha Zafar
Abstract:
This paper investigates the impact of emotional intelligence on job satisfaction and organizational commitment at workplace in the doctors; age ranging from 25 to 32 years. Job satisfaction and organizational commitment have been considered as important issue in terms of high quality services and superior performance. This paper presents a field survey conducted in 9 different public sector hospitals which operate in Punjab, Pakistan. 250 questionnaires were distributed out of which 180 returned back were showing 72% response rate, confirming the significant positive relationship between emotional intelligence and job satisfaction and emotional intelligence and organizational commitment.Keywords: emotional intelligence, job satisfaction, organizational commitment, young doctors
Procedia PDF Downloads 5763446 Reimagining Writing as a Healing Art: A Case Study on Emotional Intelligence
Authors: Shawnrece Campbell
Abstract:
Emotional intelligence as an essential job skill is growing in popularity among human resource professionals and hiring managers. Companies value those who have high emotional intelligence because of their personal competences (self-awareness, self-regulation, motivation) and social competences (empathy, social skills). In implementing any training system to teach emotional intelligence, the best methodologies for acquiring and/or improving these competences should be taken into consideration. This study focuses on how students perceived the art of writing as a tool for self-improvement. During this session, participants will engage in a brief activity designed to help students develop emotional intelligence. As a part of the discussion, participants will learn the results of a junior-level literary seminar conducted to better understand students’ thoughts and views about the effectiveness of writing as a tool for emotional healing. An analysis of qualitative textual data is presented. The outcomes indicated that students found using writing as a tool for emotional intelligence development as highly effective. The findings also revealed that students have positive perceptions of using writing as a self-healing art that leads to increased emotional intelligence and believe that writing courses of this nature enhance students’ appreciation of the value of the liberal arts.Keywords: emotional intelligence quotient, healing, soft skills, writing
Procedia PDF Downloads 2053445 A Challenge of the 3ʳᵈ Millenium: The Emotional Intelligence Development
Authors: Florentina Hahaianu, Mihaela Negrescu
Abstract:
The analysis of the positive and negative effects of technology use and abuse in Generation Z comes as a necessity in order to understand their ever-changing emotional development needs. The article quantitatively analyzes the findings of a sociological questionnaire on a group of students in social sciences. It aimed to identify the changes generated by the use of digital resources in the emotional intelligence development. Among the outcomes of our study we include a predilection for IT related activities – be they social, learning, entertainment, etc. which undermines the manifestation of emotional intelligence, especially the reluctance to face-to-face interaction. In this context, the issue of emotional intelligence development comes into focus as a solution to compensate for the undesirable effects that contact with technology has on this generation.Keywords: digital resources, emotional intelligence, generation Z, students
Procedia PDF Downloads 2093444 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2123443 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning
Authors: Umamaheswari Shanmugam, Silvia Ronchi
Abstract:
Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that can use the large amount and variety of data generated during healthcare services every day; one of the significant advantages of these new technologies is the ability to get experience and knowledge from real-world use and to improve their performance continuously. Healthcare systems and institutions can significantly benefit because the use of advanced technologies improves the efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and protect patients' safety. The evolution and the continuous improvement of software used in healthcare must consider the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device's approval. Still, they are necessary to ensure performance, quality, and safety. At the same time, they can be a business opportunity if the manufacturer can define the appropriate regulatory strategy in advance. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems
Procedia PDF Downloads 893442 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 1013441 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET
Authors: Akhil Dubey, Rajnesh Singh
Abstract:
In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing
Procedia PDF Downloads 4173440 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6153439 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients
Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim
Abstract:
The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter
Procedia PDF Downloads 1473438 Employee Well-being in the Age of AI: Perceptions, Concerns, Behaviors, and Outcomes
Authors: Soheila Sadeghi
Abstract:
— The growing integration of Artificial Intelligence (AI) into Human Resources (HR) processes has transformed the way organizations manage recruitment, performance evaluation, and employee engagement. While AI offers numerous advantages—such as improved efficiency, reduced bias, and hyper-personalization—it raises significant concerns about employee well-being, job security, fairness, and transparency. The study examines how AI shapes employee perceptions, job satisfaction, mental health, and retention. Key findings reveal that: (a) while AI can enhance efficiency and reduce bias, it also raises concerns about job security, fairness, and privacy; (b) transparency in AI systems emerges as a critical factor in fostering trust and positive employee attitudes; and (c) AI systems can both support and undermine employee well-being, depending on how they are implemented and perceived. The research introduces an AI-employee well-being Interaction Framework, illustrating how AI influences employee perceptions, behaviors, and outcomes. Organizational strategies, such as (a) clear communication, (b) upskilling programs, and (c) employee involvement in AI implementation, are identified as crucial for mitigating negative impacts and enhancing positive outcomes. The study concludes that the successful integration of AI in HR requires a balanced approach that (a) prioritizes employee well-being, (b) facilitates human-AI collaboration, and (c) ensures ethical and transparent AI practices alongside technological advancement.Keywords: artificial intelligence, human resources, employee well-being, job satisfaction, organizational support, transparency in AI
Procedia PDF Downloads 353437 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence
Authors: Garry Gorman, Nigel McKelvey, James Connolly
Abstract:
This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.Keywords: computer science education, artificial intelligence, growth mindset, pedagogy
Procedia PDF Downloads 883436 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network
Authors: Frankie Burgos, Emely Munar, Conrado Basa
Abstract:
This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading
Procedia PDF Downloads 2983435 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities
Authors: Mandeep Saini
Abstract:
The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics
Procedia PDF Downloads 243434 Value-Based Argumentation Frameworks and Judicial Moral Reasoning
Authors: Sonia Anand Knowlton
Abstract:
As the use of Artificial Intelligence is becoming increasingly integrated in virtually every area of life, the need and interest to logically formalize the law and judicial reasoning is growing tremendously. The study of argumentation frameworks (AFs) provides promise in this respect. AF’s provide a way of structuring human reasoning using a formal system of non-monotonic logic. P.M. Dung first introduced this framework and demonstrated that certain arguments must prevail and certain arguments must perish based on whether they are logically “attacked” by other arguments. Dung labelled the set of prevailing arguments as the “preferred extension” of the given argumentation framework. Trevor Bench-Capon’s Value-based Argumentation Frameworks extended Dung’s AF system by allowing arguments to derive their force from the promotion of “preferred” values. In VAF systems, the success of an attack from argument A to argument B (i.e., the triumph of argument A) requires that argument B does not promote a value that is preferred to argument A. There has been thorough discussion of the application of VAFs to the law within the computer science literature, mainly demonstrating that legal cases can be effectively mapped out using VAFs. This article analyses VAFs from a jurisprudential standpoint to provide a philosophical and theoretical analysis of what VAFs tell the legal community about the judicial reasoning, specifically distinguishing between legal and moral reasoning. It highlights the limitations of using VAFs to account for judicial moral reasoning in theory and in practice.Keywords: nonmonotonic logic, legal formalization, computer science, artificial intelligence, morality
Procedia PDF Downloads 753433 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 1093432 Integrating AI in Education: Enhancing Learning Processes and Personalization
Authors: Waleed Afandi
Abstract:
Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education
Procedia PDF Downloads 343431 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 1333430 The Developmental Model of Self-Efficacy Emotional Intelligence and Social Maturity among High School Boys and Girls
Authors: Shrikant Chavan, Vikas Minchekar
Abstract:
The present study examined the self-efficacy, emotional intelligence and social maturity of High school boys and girls. Furthermore, study aimed at to foster the self-efficacy, emotional intelligence and social maturity of high school students. The study was conducted on 100 high school students, out of which 50 boys and 50 girls were selected through simple random sampling method from the Sangli city of Maharashtra state, India. The age range of the sample is 14 to 16 years. Self-efficacy scale developed by Jesusalem Schwarzer, Emotional intelligence scale developed by Hyde, Pethe and Dhar and social maturity scale developed by Rao were administered to the sample. Data was analyzed using mean, SD and ‘t’ test further Karl Pearson’s product moment, correlation of coefficient was used to know the correlation between emotional intelligence, self-efficacy, and social maturity. Results revealed that boys and girls did not differ significantly in their self-efficacy and social maturity. Further, the analysis revealed that girls are having high emotional intelligence compared to boys, which is significant at 0.01 level. It is also found that there is a significant and positive correlation between self-efficacy and emotional intelligence, self-efficacy and social maturity and emotional intelligence and social maturity. Some developmental strategies to strengthen the self-efficacy, emotional intelligence and social maturity of high school students are suggested in the study.Keywords: self-efficacy, emotional intelligence, social maturity, developmental model and high school students
Procedia PDF Downloads 4693429 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 503428 Resource Assessment of Animal Dung for Power Generation: A Case Study
Authors: Gagandeep Kaur, Yadwinder Singh Brar, D. P. Kothari
Abstract:
The paper has an aggregate analysis of animal dung for converting it into renewable biomass fuel source that could be used to help the Indian state Punjab to meet rising power demand. In Punjab district Bathinda produces over 4567 tonnes of animal dung daily on a renewable basis. The biogas energy potential has been calculated using values for the daily per head animal dung production and total no. of large animals in Bathinda of Punjab. The 379540 no. of animals in district could produce nearly 116918 m3 /day of biogas as renewable energy. By converting this biogas into electric energy could produce 89.8 Gwh energy annually.Keywords: livestock, animal dung, biogas, renewable energy
Procedia PDF Downloads 5143427 Advancing Veterinary Health through Sustainable Solutions
Authors: Abdelkader Mohamed Abdelkader Mohamed Gaballah
Abstract:
This study addresses advancements in veterinary health and their significance in enhancing animal care. The primary objective is to meet the increasing needs of veterinarians and farmers by offering sustainable and effective veterinary medicines that comply with safety and efficacy standards. The methodology involves a comprehensive selection process to source high-quality veterinary products from trusted manufacturers while ensuring adherence to environmental sustainability principles. The findings demonstrate that these products significantly contribute to improving animal health, reducing the prevalence of diseases, and supporting sustainable farming practices. In conclusion, the study emphasizes the importance of collaborative efforts within the veterinary pharmaceutical industry to meet global demands and promote sustainable practices in animal care.Keywords: veterinary medicine, animal health, veterinary pharmaceuticals, livestock management, animal science and care, veterinary drug development, animal nutrition, wellness
Procedia PDF Downloads 23426 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks
Authors: Raphael Tuor, Denis Lalanne
Abstract:
The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction
Procedia PDF Downloads 1603425 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets
Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso
Abstract:
Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow
Procedia PDF Downloads 843424 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 157