Search results for: Cox proportional hazard regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4246

Search results for: Cox proportional hazard regression

946 Socio-Demographic Characteristics and Psychosocial Consequences of Sickle Cell Disease: The Case of Patients in a Public Hospital in Ghana

Authors: Vincent A. Adzika, Franklin N. Glozah, Collins S. K. Ahorlu

Abstract:

Background: Sickle Cell Disease (SCD) is of major public-health concern globally, with majority of patients living in Africa. Despite its relevance, there is a dearth of research to determine the socio-demographic distribution and psychosocial impact of SCD in Africa. The objective of this study therefore was to examine the socio-demographic distribution and psychosocial consequences of SCD among patients in Ghana and to assess their quality of life and coping mechanisms. Methods: A cross-sectional research design was used, involving the completion of questionnaires on socio-demographic characteristics, quality of life of individuals, anxiety and depression. Participants were 387 male and female patients attending a sickle cell clinic in a public hospital. Results: Results showed no gender and marital status differences in anxiety and depression. However, there were age and level of education variances in depression but not in anxiety. In terms of quality of life, patients were more satisfied by the presence of love, friends, relatives as well as home, community and neighbourhood environment. While pains of varied nature and severity were the major reasons for attending hospital in SCD condition, going to the hospital as well as having Faith in God was the frequently reported mechanisms for coping with an unbearable SCD attacks. Multiple regression analysis showed that some socio-demographic and quality of life indicators had strong associations with anxiety and/or depression. Conclusion: It is recommended that a multi-dimensional intervention strategy incorporating psychosocial dimensions should be considered in the treatment and management of SCD.

Keywords: anxiety, depression, sickle cell disease, socio-demographic quality of life, characteristics, Ghana

Procedia PDF Downloads 479
945 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 329
944 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 161
943 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning

Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis

Abstract:

Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.

Keywords: space syntax, economic activities, multilevel model, Chinese city

Procedia PDF Downloads 125
942 The Fefe Indices: The Direction of Donal Trump’s Tweets Effect on the Stock Market

Authors: Sergio Andres Rojas, Julian Benavides Franco, Juan Tomas Sayago

Abstract:

An increasing amount of research demonstrates how market mood affects financial markets, but their primary goal is to demonstrate how Trump's tweets impacted US interest rate volatility. Following that lead, this work evaluates the effect that Trump's tweets had during his presidency on local and international stock markets, considering not just volatility but the direction of the movement. Three indexes for Trump's tweets were created relating his activity with movements in the S&P500 using natural language analysis and machine learning algorithms. The indexes consider Trump's tweet activity and the positive or negative market sentiment they might inspire. The first explores the relationship between tweets generating negative movements in the S&P500; the second explores positive movements, while the third explores the difference between up and down movements. A pseudo-investment strategy using the indexes produced statistically significant above-average abnormal returns. The findings also showed that the pseudo strategy generated a higher return in the local market if applied to intraday data. However, only a negative market sentiment caused this effect on daily data. These results suggest that the market reacted primarily to a negative idea reflected in the negative index. In the international market, it is not possible to identify a pervasive effect. A rolling window regression model was also performed. The result shows that the impact on the local and international markets is heterogeneous, time-changing, and differentiated for the market sentiment. However, the negative sentiment was more prone to have a significant correlation most of the time.

Keywords: market sentiment, Twitter market sentiment, machine learning, natural dialect analysis

Procedia PDF Downloads 64
941 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.

Keywords: road safety, crash prediction, exploratory analysis, machine learning

Procedia PDF Downloads 113
940 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology

Authors: Usha Loganathan, Haresh Pandya

Abstract:

Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.

Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio

Procedia PDF Downloads 254
939 Assessment of Work-Related Stress and Its Predictors in Ethiopian Federal Bureau of Investigation in Addis Ababa

Authors: Zelalem Markos Borko

Abstract:

Work-related stress is a reaction that occurs when the work weight progress toward becoming excessive. Therefore, unless properly managed, stress leads to high employee turnover, decreased performance, illness and absenteeism. Yet, little has been addressed regarding work-related stress and its predictors in the study area. Therefore, the objective of this study was to assess stress prevalence and its predictors in the study area. To that effect, a cross-sectional study design was conducted on 281 employees from the Ethiopian Federal Bureau of Investigation by using stratified random sampling techniques. Survey questionnaire scales were employed to collect data. Data were analyzed by percentage, Pearson correlation coefficients, simple linear regression, multiple linear regressions, independent t-test and one-way ANOVA statistical techniques. In the present study13.9% of participants faced high stress, whereas 13.5% of participants faced low stress and the rest 72.6% of officers experienced moderate stress. There is no significant group difference among workers due to age, gender, marital status, educational level, years of service and police rank. This study concludes that factors such as role conflict, performance over-utilization, role ambiguity, and qualitative and quantitative role overload together predict 39.6% of work-related stress. This indicates that 60.4% of the variation in stress is explained by other factors, so other additional research should be done to identify additional factors predicting stress. To prevent occupational stress among police, the Ethiopian Federal Bureau of Investigation should develop strategies based on factors that will help to develop stress reduction management.

Keywords: work-related stress, Ethiopian federal bureau of investigation, predictors, Addis Ababa

Procedia PDF Downloads 70
938 Trauma Informed Healthy Lifestyle Program for Young Adults

Authors: Alicia Carranza, Hildemar Dos Santos, W. Lawrence Beeson, R. Patti Herring, Kimberly R. Freeman, Adam Arechiga

Abstract:

Early exposure to trauma can impact health-related behaviors later in life, which poses a considerable challenge for young adults transitioning into independence when they are lacking the necessary skills and support to live a healthy life. The study will be a non-experimental, mixed methods pre- and post-test (where subjects will serve as their own controls) to determine the impact of an eight-week trauma-informed healthy lifestyle program on self-efficacy for adopting health-promoting behaviors and health outcomes among young adults. Forty-two adults, ages 18-24 who are living in Orange County, CA will be recruited to participate in the eight-week trauma-informed healthy living program. Baseline and post-intervention assessments will be conducted to assess changes in self-efficacy for nutrition and physical exercise, sleep quality and quantity, body mass index (kg/m2), and coping skills used by comparing pre- to post-intervention. Some of the planned activities include cooking demonstrations, mindful eating activities and media literacy using Instagram. Frequencies analyses, paired t-test, and multiple regression will be used to determine if there was a change in coping skills. The results of this study can serve to assess the potential for mitigating the effects of Adverse Childhood Experiences (ACEs), or other toxic stress, experienced during adolescence across the lifespan. Young adults who learn how to cope with stress in a healthy way and engage in a healthy lifestyle can be better prepared to role model that behavior to their children.

Keywords: nutrition, healthy lifestyle, trauma-informed, stress management

Procedia PDF Downloads 106
937 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus

Authors: Linnan Zhang

Abstract:

Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.

Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality

Procedia PDF Downloads 200
936 Slum Dwellers Residential Location Choices Decision: A Determinant of Slum Growth in Lagos Mega City

Authors: Olabisi Badmos, Daniel Callo-Concha, Babatunde Agbola, Andreas Rienow, Klaus Greve, Carsten Jurgens

Abstract:

Slums are important components of city development planning, especially in Africa where slum growth is on par with urban growth. Purposefully, our knowledge on the residential choice of slum dwellers, which contributes to population growth in slums, is limited. This is the case in Lagos, a megacity reportedly dominated by slum dwellers. Thus, this study aims to disclose the factors influencing the residential choices and causes of people to remain in Lagos slums. Data was collected through questionnaire administration and focus group discussions. Descriptive statistics were used to analyze and describe the factors influencing residential location choice; logistic regression was utilized to determine the extent to which the neighborhood and household attributes, influence slum dwellers decisions to remain in the slums. Results showed that movement to Lagos was the main cause of population growth in slums; most of the migrants were from closer geopolitical zones (in Nigeria). Further, the movement patterns observed support two theories of human mobility in slums: slum as a sink, and as a final destination. Also, the factors that brought most of the slum dwellers to the slums (cheap housing, proximity to work etc.) differs from the ones that made them stay (Gender, employment status, housing status etc.). This study concludes that residential choice and intention to stay are the major contributors to population growth in a slum. It is therefore important for Lagos state Government to incorporate these elements of residential choices of slum dwellers in their slum management policies if the city aims to be free of slums by 2030

Keywords: Lagos, population growth, residential decision choices, slum

Procedia PDF Downloads 171
935 Teachers' Attitude and Knowledge as Predictors of Effective Use of Digital Devices for the Education of Students with Special Needs in Oyo, Nigeria

Authors: Faseluka Olamide Tope

Abstract:

Giving quality education to students with special needs requires that all necessary resources should be harnessed and digital devices has become important part of resources used as instructional materials in educating students with special needs. Teachers who will make use of these technologies are considered as a part of the most important elements in any educational programme and the effective usage of these technologies largely depends on them. Out of numerous determinants of the effective use of these digital devices, this study examines teachers’ attitude and knowledge as predictors of effective use of digital technology for education of special needs student in Oyo state, Nigeria. The descriptive survey research design of the expo-facto type was adopted for the study, using simple random sampling technique. The study was carried out among sixty (60) participants. Two research questions and two research hypotheses were formulated and used. The data collected through the research instruments for the study were analysedusing frequency, percentage, mean and standard deviation, Pearson, Product, Moment Correlation (PPMC) and Multiple Regression Analysis. The study revealed a significant relationship between teachers attitude (50, < 0.05) and effective use of digital technologies for special needs students. Furthermore, there was a significant contribution F (F=4.289; R=0.876 and R2 =0.758) in the joint contribution of the independent variable  (teacher’s attitude and teacher’s knowledge) and dependent variable (effective use of digital technologies) while teachers knowledge have the highest contribution(b=7.926, t=4.376), the study therefore revealed that teachers attitude and knowledge are potent factors that predicts the effective usage of digital technologies for the education of special needs student. The study recommended that due to the ever-changing nature of technology which comes with new features, teachers should be equipped with appropriate knowledge in order to effectively make use of them and teachers should also develop right attitude toward the use of digital technologies

Keywords: teachers’ knowledge, teachers’ attitude, digital devices, special needs students

Procedia PDF Downloads 51
934 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment

Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong

Abstract:

Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.

Keywords: lung cancer, screening, China., discrete choice experiment

Procedia PDF Downloads 261
933 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation

Authors: Harini Chakkera

Abstract:

Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.

Keywords: kidney, transplant, diabetes, insulin

Procedia PDF Downloads 91
932 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 98
931 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 258
930 Knowledge, Attitude, Practice and Contributing Factors on Menstrual Hygiene Among High School Students, Ethiopia: Cross-Sectional Study

Authors: Getnet Gedefaw, Fentanesh Endalew, Bitewush Azmeraw, Bethelhem Walelign, Eyob Shitie

Abstract:

Introduction: The issue of menstrual hygiene is often overlooked and has not been sufficiently addressed in the fields of reproductive health in low and middle-income countries. Inadequate menstrual hygiene practices can increase the risk of various infectious and chronic obstetric and gynaecological complications for girls and adolescents. Hence, this study seeks to investigate the knowledge, attitudes, and practices related to menstrual hygiene, along with the factors influencing them, among high school students. Methods: A facility based cross-sectional study was conducted involving a total of 423 study subjects. A systematic random sampling technique was utilized. Data was entered and analyzed through Epi data 3.1 and SPSS 22, respectively. Both univariable and multivariable logistic regression models were employed. A p-value of less than 0.05 was considered statistically significant. Results: This study revealed that 365(89.2%), 200(48.9%) and 196(47.9%) of the study participants have good knowledge, good practice, and good attitudes about menstrual hygiene, respectively. Being higher grade students (grade 10) [AOR=3.96, 95% CI =2.0-7.8] and having good practice of menstrual hygiene (AOR=2.52, 95% CI= 1.26-5) had a positive association with menstrual hygiene knowledge. Whereas maternal education level (AOR=1.86, 95% CI=1.18-2.9) and being a grade 10 student (AOR=2.3, 95% CI=1.48-3.56) were associated factors for practising menstrual hygiene. Additionally, being higher grade students (AOR=1.9, 95% CI=1.2-2.8), age ≥18 years (AOR=1.67, 95% CI=1.09-2.55) were statistically and positively associated with the attitude of menstrual hygiene. Conclusion: The study findings indicated that the knowledge of the study participants regarding menstrual hygiene was high, while their attitudes and practices towards menstrual hygiene were low. It is suggested that raising awareness among reproductive health groups and educating their families and parents could potentially lead to a positive change in their poor practices and attitudes towards menstrual hygiene.

Keywords: menstrual hygiene, menstruation, students, reproductive health

Procedia PDF Downloads 61
929 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 288
928 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field

Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson

Abstract:

Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.

Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat

Procedia PDF Downloads 267
927 Prevalence and Occupational Factors Associated with Low Back Pain among the Female Garment Workers: A Cross-Sectional Study in Bangladesh

Authors: Fazle Rabbi, Mashuda Khanom Tithi, Tasnim Mirza, Sanjida Rowshan Anannya, Ahmed Hossain

Abstract:

Background: Low Back Pain (LBP) is one of the common health problems among the garment workers that causes workers absenteeism from the work. The purpose of the study is to identify the association between occupational factors and LBP among the female garment workers in Bangladesh. Materials and Methods: A cross-sectional study was conducted with 487 female garment workers from three compliant garment factories of Bangladesh. Face-to-face interview on four different LBP measures along with questions on socio-demographic, occupational, and physical factors were used to collect the data. Result: The prevalence rates for LBP lasts for at least one day during the last six months, chronic pain, intense pain, and seeking medical care for LBP were found 63.04%, 38.60%, 13.76%, and 18.89%, respectively among the female garments workers. The multivariate logistic regression analysis indicates that duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) are positively associated with LBP. Besides, age, BMI, family income, marital status and number of children are also found positively associated with the LBP measures. Conclusion: The prevalence of LBP among female garment workers in Bangladesh is found high. The duration of employment (>5 years), regular weight bearing and extended weekly working hours (>48 hours) play a significant role in developing LBP among the female workers. Factories need to consider training programs on the appropriate technique of weight bearing. It is also important to conduct regular screening programs to identify LBP, especially with married, overweight/obese and older age group to reduce the occurrence of LBP.

Keywords: Bangladesh, garment workers, low back pain, occupational health

Procedia PDF Downloads 198
926 The Differences in Organizational Citizenship Behavior Based on Work Status of Hotels Employees in Bali in Terms of Quality of Work Life

Authors: Ni Wayan Sinthia Widiastuti, Komang Rahayu Indrawati

Abstract:

The increasing number of tourists coming to Bali, causing accommodation facilities, such as hotels have increased. The existence of hotel needs will be the source of labor and cost efficiency, so that hotel management employs employees with different working status. The hospitality industry is one of the sectors that require organizational citizenship behavior because, the main goal of every hotel, in general, was to provide the best service and quality to tourists. The purpose of this study was to determine the differences in organizational citizenship behavior based on work status of employees at the Hotel in Bali in terms of quality of work life. Research sample was chosen randomly through two-stage cluster sampling which succeeds to obtain 126 samples from 11 hotels in Denpasar, Bali. The subjects consisted of 64 employees with Employment Agreement of Uncertain Time or who is often called a permanent employee and 62 employees with Employment Agreement of Certain Time or better known as contract employees, outsourcing, and daily workers. Instruments in this study were the scale of organizational citizenship behavior and the scale of quality of work life. The results of ANCOVA analysis showed there were differences in organizational citizenship behavior based on employee work status in terms of quality of work life. Differences in organizational citizenship behavior and quality of work life based on work status of employees using comparative test was analysis by independent sample t-test shows there were differences in organizational citizenship behavior and quality of work life between employees with different working status in hotels in Bali. The result of the regression analysis showed the functional relationship between quality of work life and organizational citizenship behavior.

Keywords: hotel in Bali, organizational citizenship behavior, quality of work life, work status of employees

Procedia PDF Downloads 286
925 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
924 Factors Impact Satisfaction and Continuance Intention to Use Facebook

Authors: Bataineh Abdallah, Alabdallah Ghaith, Alkharabshe Abdalhameed

Abstract:

Social media is an umbrella term for different types of online communication channels. The most prominent forms can be divided into four categories: Collaborative projects (e.g. Wikipedia, comparison-shopping sites), blogs (e.g. Twitter), content communities (e.g. Youtube), social networking sites (e.g. Facebook) social media allow consumers to share their opinions, criticisms and suggestions in public. Facebook launched in 2004, initially targeted college students and later started including everyone has become the most popular sites amongst the young generation for connecting with friends and relatives and for the communication of ideas. In 2013 Facebook penetration rate reached 41.4% of the population making it the most popular social networking site in Jordan. Accordingly, the purpose of this research is to examine the impact of perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment and subjective norms on users' satisfaction and continuance intention to use Facebook in Jordan. Using a structured questionnaire, the primary data was collected from 584 users who have an active Facebook accounts. Multiple regression analysis was employed to test the research model and hypotheses. The research findings indicate that perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment, and subjective norms have a positive and significant effect on users' satisfaction and continuance intention to use Facebook. The findings also indicated that the strongest predictors, based on beta values, on both users' satisfaction and continuance intention to use Facebook is subjective norms and respectively, perceived enjoyment, perceived usefulness, perceived ease of us, and perceived trust. Research results, recommendations, and future research opportunities are also discussed.

Keywords: perceived usefulness, perceived ease of use, perceived trust, perceived enjoyment, perceived subjective norms, users' satisfaction, continuance intention, Facebook

Procedia PDF Downloads 468
923 Impact of Modern Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe Yohannis

Abstract:

The enhanced utilization of modern beehives holds significant potential to enhance the livelihoods of smallholder farmers who heavily rely on mixed crop-livestock farming for their income. Recognizing this, the distribution of improved beehives has been implemented across various regions in Ethiopia, including the Bugina district. However, the precise impact of these improved beehives on farmers' income has received limited attention. To address this gap, this study aims to assess the influence of adopting upgraded beehives on rural households' income and asset accumulation. To conduct this research, survey data was gathered from a sample of 350 households selected through random sampling. The collected data was then analyzed using an econometric stochastic frontier model (ESRM) approach. The findings reveal that the adoption of improved beehives has resulted in higher annual income and asset growth for beekeepers. On average, those who adopted the improved beehives earned approximately 6,077 Ethiopian Birr (ETB) more than their counterparts who did not adopt these beehives. However, it is worth noting that the impact of adoption would have been even greater for non-adopters, as evidenced by the negative transitional heterogeneity effect of 1792 ETB. Furthermore, the analysis indicates that the decision to adopt or not adopt improved beehives was driven by individual self-selection. The adoption of improved beehives also led to an increase in fixed assets for households, establishing it as a viable strategy for poverty reduction. Overall, this study underscores the positive effect of adopting improved beehives on rural households' income and asset holdings, showcasing its potential to uplift smallholder farmers and serve as an alternative mechanism for reducing poverty.

Keywords: impact, adoption, endogenous switching regression, income, improved beehives

Procedia PDF Downloads 55
922 Epstein-Barr Virus-associated Diseases and TCM Syndromes Types: In Search for Correlation

Authors: Xu Yifei, Le Yining, Yang Qingluan, Tu Yanjie

Abstract:

Objective: This study aims to investigate the distribution features of Traditional Chinese Medicine (TCM) syndromes and syndrome elements in Epstein-Barr virus-associated diseases and then explores the relations between TCM syndromes or syndrome elements and laboratory indicators of Epstein-Barr virus-associated diseases. Methods: A cross-sectional study of 70 patients with EBV infection was described. We assessed the diagnostic information and laboratory indicators of these patients from Huashan Hospital Affiliated to Fudan University between November 2017 and July 2019. The disease diagnosis and syndrome differentiation were based on the diagnostic criteria of EBV-associated diseases and the theory of TCM respectively. Confidence correlation analysis, logistic regression analysis, cluster analysis, and the Sankey diagram were used to analyze the correlation between the data. Results: The differentiation of the 4 primary TCM syndromes in the collected patients was correlated with the indexes of immune function, liver function, inflammation, and anemia, especially the relationship between Qifen syndrome and high lactic acid dehydrogenase level. The common 11 TCM syndrome elements were associated with the increased CD3+ T cell rate, low hemoglobin level, high procalcitonin level, high lactic acid dehydrogenase level, and low albumin level. Conclusion: The changes in immune function indexes, procalcitonin, and liver function-related indexes in patients with EBV-associated diseases were consistent with the evolution law of TCM syndromes. This study provides a reference for judging the pathological stages of these kinds of diseases, predicting their prognosis, and guiding subsequent treatment strategies based on TCM syndrome type.

Keywords: EBV-associated diseases, traditional Chinese medicine syndrome, syndrome element, diagnostics

Procedia PDF Downloads 110
921 Mandatory Wellness Assessments for Medical Students at the University of Ottawa

Authors: Haykal. Kay-Anne

Abstract:

The health and well-being of students is a priority for the Faculty of Medicine at the University of Ottawa. The demands of medical studies are extreme, and many studies confirm that the prevalence of psychological distress is very high among medical students and that it is higher than that of the general population of the same age. The main goal is to identify risk factors for mental health among medical students at the University of Ottawa. The secondary objectives are to determine the variation of these risk factors according to demographic variables, as well as to determine if there is a change in the mental health of students during the 1st and 3rd years of their study. Medical students have a mandatory first and third-year wellness check meeting. This assessment includes a questionnaire on demographic information, mental health, and risk factors such as physical health, sleep, social support, financial stress, education and career, stress and drug use and/or alcohol. Student responses were converted to numerical values and analyzed statistically. The results show that 61% of the variation in the mean of the mental health score is explained by the following risk factors (R2 = 0.61, F (9.396) = 67.197, p < 0.01): lack of sleep and fatigue (β = 0.281, p < 0.001), lack of social support (β = 0.217, p <0.001), poor study or career development (β = 0.195, p < 0.001) and an increase stress and drug and alcohol use (β = -0.239, p < 0.001). No demographic variable has a significant effect on the presence of risk factors. In addition, fixed-effects regression demonstrated significantly lower mental health (p < 0.1) among first-year students (M = 0.587, SD = 0.072) than among third-year students (M = 0.719, SD = 0.071). This preliminary study indicates the need to continue data collection and analysis to increase the significance of the study results. As risk factors are present at the beginning of medical studies, it is important to offer resources to students very early in their medical studies and to have close monitoring and supervision.

Keywords: assessment of mental health, medical students, risk factors for mental health, wellness assessment

Procedia PDF Downloads 123
920 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry

Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim

Abstract:

Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.

Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain

Procedia PDF Downloads 91
919 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 108
918 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis

Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou

Abstract:

Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.

Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration

Procedia PDF Downloads 138
917 Bank, Stock Market Efficiency and Economic Growth: Lessons for ASEAN-5

Authors: Tan Swee Liang

Abstract:

This paper estimates bank and stock market efficiency associations with real per capita GDP growth by examining panel-data across three different regions using Panel-Corrected Standard Errors (PCSE) regression developed by Beck and Katz (1995). Data from five economies in ASEAN (Singapore, Malaysia, Thailand, Philippines, and Indonesia), five economies in Asia (Japan, China, Hong Kong SAR, South Korea, and India) and seven economies in OECD (Australia, Canada, Denmark, Norway, Sweden, United Kingdom U.K., and United States U.S.), between 1990 and 2017 are used. Empirical findings suggest one, for Asia-5 high bank net interest margin means greater bank profitability, hence spurring economic growth. Two, for OECD-7 low bank overhead costs (as a share of total assets) may reflect weak competition and weak investment in providing superior banking services, hence dampening economic growth. Three, stock market turnover ratio has negative association with OECD-7 economic growth, but a positive association with Asia-5, which suggest the relationship between liquidity and growth is ambiguous. Lastly, for ASEAN-5 high bank overhead costs (as a share of total assets) may suggest expenses have not been channelled efficiently to income generating activities. One practical implication of the findings is that policy makers should take necessary measures toward financial liberalisation policies that boost growth through the efficiency channel, so that funds are efficiently allocated through the financial system between financial and real sectors.

Keywords: financial development, banking system, capital markets, economic growth

Procedia PDF Downloads 139