Search results for: iron deficiency anaemia
1026 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron
Authors: Liqiang Gong, Hanguang Fu
Abstract:
In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations
Procedia PDF Downloads 651025 Relationship of Trace Minerals Nutritional Status of Camel (Camelus dromedarius) to Their Contents in Egyptian Feedstuff
Authors: Maha Mohamed Hady Ali, M. A. El-Sayed
Abstract:
Camel (Camelus dromedarius) is very important animal in many arid and semi-arid zones of tropical and subtropical regions as it serves as dual purpose providing meat and milk for human and as draft animal. Camel, like other animal must receive all essential nutrients despite the hostile environment. A study was conducted to evaluate the nutritional status of some micro-minerals of camel under Egyptian environmental condition. Forty five blood samples were collected from apparently healthy male camels with an average age between 2-6 years at the slaughter house in Cairo province, Egypt. The animals were fed mainly on berseem (Trifolium alexandrinum) or concentrate with straw before slaughtering. The collected serum and feedstuff samples were subjected to copper, iron, selenium and zinc analysis using Atomic absorption spectrophotometer. The data showed variation in the level of copper, iron, selenium and zinc in the serum of the dromedary camel as well as in the feedstuffs. Furthermore, the results indicated that the micro- minerals status of feeds may not always reflected as such in camel blood suggesting some role of bioavailability. The main reason for the lack of such reflection seems to be the wide diversity exists in the surrounding environment (forages and plants) as well as the bioavailability of such minerals. Since the requirement of micro-minerals have not been established for camel, more researches must be focused on this topic.Keywords: camel, copper, egypt, feed stuff, iron, selenium, zinc
Procedia PDF Downloads 5221024 Etiologies of Megaloblastic Anemia in a Pediatric Hospital
Authors: Atitallah Sofien, Bouyahia Olfa, Mohsen S., Boussetta Khadija, Khemiri Monia, Fitouri Zohra, Boukthir Samir
Abstract:
Introduction: Megaloblastic anemia (MA) is rare in children. The diversity of its etiologies can lead to misdiagnosis and may, therefore, delay the treatment. The aim of this study was to describe the epidemiological and etiological characteristics of children followed for MA at the Tunis children's hospital. Methodology: This is a retrospective study over a period of 25 years of all cases of MA in children in the Children's Hospital of Tunis. The diagnosis of MA was confirmed by myelogram in all patients. Results: We collected 29 observations, with an incidence of 1.2 cases/year and a sex ratio of 1. Sixty percent of the children were aged between 3 months and 2 years. The consultation time was between 15 and 30 days in a third of the patients. The clinical examination showed hypotrophy in 13% of cases, hepatosplenomegaly in 6% of cases, neurological or neurosensory damage in 23% of cases, and cardiac damage in 10% of children. MA was associated with thrombocytopenia in 65% of cases and leukoneutropenia in 24% of cases. One in 5 children had pancytopenia. The etiologies were mainly thiamine deficiency, Immerslund disease (20%), nutritional deficiency (13%), and Biermer anemia (13%). One of the patients presented an MA revealing visceral leishmaniasis. The outcome under vitamin B12, the dose of which was adapted to each etiology, was favorable for all patients. Conclusion: MA is rare in children with multiple etiologies that are mainly dominated by hereditary conditions and nutritional deficiencies, mainly in vitamin B12. The association with visceral leishmaniasis seems to be a particularity in our country not reported in the literature.Keywords: megaloblastic anemia, children, vitamin B12, anemia
Procedia PDF Downloads 661023 Preparation and Quality Control of a New Radiolabelled Complex of Spion
Authors: H. Yousefnia, SJ. Ahmadi, S. Sajadi, S. Zolghadri, A. Bahrami-Samani, M. Bagherzadeh
Abstract:
Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed.Keywords: iron nanoparticles, preparation, quality control, 153Sm
Procedia PDF Downloads 3301022 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba
Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo
Abstract:
Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba
Procedia PDF Downloads 4441021 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA).Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates
Procedia PDF Downloads 3331020 Prevalence of Seropositivity for Cytomegalovirus in Patients with Hereditary Bleeding Diseases in West Azerbaijan of Iran
Authors: Zakieh Rostamzadeh, Zahra Shirmohammadi
Abstract:
Human cytomegalovirus is a species of the cytomegalovirus family of viruses, which in turn is a member of the viral family known as herpesviridae or herpesviruses. Although they may be found throughout the body, HCMV infections are frequently associated with the salivary glands. HCMV infection is typically unnoticed in healthy people, but can be life-threatening for the immunocompromised such as HIV-infected persons, organ transplant recipients, or newborn infants. After infection, HCMV has an ability to remain latent within the body over long periods. Cytomegalovirus (CMV) causes infection in immunocompromised, hemophilia patients and those who received blood transfusion frequently. This study aimed at determining the prevalence of cytomegalovirus (CMV) antibodies in hemophilia patients. Materials and Methods: A retrospective observational study was carried out in Urmia, North West of Iran. The study population comprised a sample of 50 hemophilic patients born after 1985 and have received blood factors in West Azerbaijan. The exclusion criteria include: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling. All samples were evaluated with the method of ELISA, with a certain kind of kit and by a certain laboratory. Results: Fifty hemophiliacs from 250 patients registered with Urmia Hemophilia Society were enrolled in the study including 43 (86%) male, and 7 (14%) female. The mean age of patients was 10.3 years, range 3 to 25 years. None of patients had risk factors mentioned above. Among our studied population, 34(68%) had hemophilia A, 1 (2%) hemophilia B, 8 (16%) VWF, 3(6%) factor VII deficiency, 1 (2%) factor V deficiency, 1 (2%) factor X deficiency, 1 (2%). Sera of 50 Hemodialysis patients were investigated for CMV-specific immunoglobulin G (IgG) and IgM. % 91.89 patients were anti-CMV IgG positive and %40.54 was seropositive for anti-CMV IgM. 37.8% patient had serological evidence of reactivation and 2.7% of patients had the primary infection. Discussion: There was no relationship between the antibody titer and: drug abusing, high risk sexual contacts, vertical transmission of mother to fetus and suspicious needling.Keywords: bioinformatics, biomedicine, cytomegalovirus, immunocompromise
Procedia PDF Downloads 3571019 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal
Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero
Abstract:
The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater
Procedia PDF Downloads 871018 Correlation between Copper Uptake and Decrease of Copper (Hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa
Authors: Khaled M. Khleifat
Abstract:
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram-positive bacteria Bacillusthuringiensis strain Israelisas well as Gram-negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron-binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.Keywords: Pseudomonas aeruginosa, hypocupremia, correlation, PCV
Procedia PDF Downloads 3111017 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis
Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim
Abstract:
In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element
Procedia PDF Downloads 3601016 Effects of Microbial Biofertilization on Nodulation, Nitrogen Fixation, and Yield of Lablab purpureus
Authors: Benselama Amel, Ounane S. Mohamed, Bekki Abdelkader
Abstract:
A collection of 20 isolates from fresh Nodules of the legume plant Lablab purpureus was isolated. These isolates have been authenticated by seedling inoculation grown in jars containing sand. The results obtained after two months of culture have revealed that the 20 isolates (100% of the isolates) are able to nodulate their host plants. The results obtained were analyzed statistically by ANOVA using the software statistica and had shown that the effect of the inoculation has significantly improved all the growth parameters (the height of the plant and the dry weight of the aerial parts and roots, and the number of nodules). We have evaluated the tolerance of all strains of the collection to the major stress factors as the salinity, pH and extreme temperature. The osmotolerance reached a concentration up to 1710mm of NaCl. The strains were also able to grow on a wide range of pH, ranging from 4.5 to 9.5, and temperature, between 4°C and 40°C. Also, we tested the effect of the acidity, aluminum and ferric deficit on the Lablab-rhizobia symbiosis. Lablab purpureus has not been affected by the presence of high concentrations of aluminum. On the other hand, iron deficiency has caused a net decrease in the dry biomass of the aerial part. The results of all the phenotypic characters have been treated by the statistical Minitab software, the numerical analysis had shown that these bacterial strains are divided into two distinct groups at a level of similarity of 86 %. The SDS-PAGE was carried out to determine the profile of the total protein of the strains. The coefficients of similarity of polypeptide bands between the isolates and strains reference (Bradyrhizobium, Mesorizobium sp.) confirm that our strain belongs to the groups of rhizobia.Keywords: SDS-PAGE, rhizobia, symbiosis, phenotypic characterization, Lablab purpureus
Procedia PDF Downloads 3061015 Therapeutic Management of Toxocara canis Induced Hepatitis in Dogs
Authors: Milind D. Meshram
Abstract:
Ascarids are the most frequent worm parasite of dogs and cats. There are two species that commonly infect dogs: Toxocara canis and Toxascaris leonina. Adult roundworms live in the stomach and intestines and can grow to 7 inches (18 cm) long. A female may lay 200,000 eggs in a day. The eggs are protected by a hard shell. They are extremely hardy and can live for months or years in the soil. A dog aged about 6 years, from Satara was referred to Teaching Veterinary Clinical Complex (TVCC) with a complaint of abdominal pain, anorexia, loss of condition and dull body coat with mucous pale membrane. The clinical examination revealed Anaemia, palpation of abdomen revealed enlargement of liver, slimy feel of the intestine loop, diarrhea.Keywords: therapeutic management, Toxocara canis, induced hepatitis, dogs
Procedia PDF Downloads 5921014 Impact of Diet and COVID-19 Policies on Osteopenia in a Hispanic White Adolescent Girl
Authors: Maria Angelica Trak-Fellermeier, Alison K. Macchi, Rodolfo Galvan, Yolangel Hernandez, Thresia Gambon, Rebeca Martinez, Cristina Palacios
Abstract:
Poor lifestyle habits, vitamin D deficiency, and inadequate calcium intake, particularly during the COVID-19 pandemic, may contribute to severe osteopenia in childhood, increasing future fractures and osteoporosis risk. We here present a case of osteopenia in a 13-year-old white, Hispanic, premenarchal girl who completed the baseline visit of the MetA-Bone Trial during the COVID-19 pandemic. The premenarchal girl has a family history of osteoporosis (maternal grandfather) but no previous fractures; moderate outdoor activity was <1 hour/day 3 times/week with 8 hours/day of sleep. Consumption of dairy products and vegetables was <1 serving/day. Lab blood tests confirmed vitamin D deficiency (serum 25(OH)D: 9 ng/L) and hyperphosphatemia (5.2 mg/dL); other tests were normal. DXA scan Z‐score was ‐2.2 SD (indicative of osteopenia by age and sex). The premenarchal girl was referred to a pediatrician, who confirmed the results, and prescribed a daily supplement with 2000 IU of vitamin D and 1000 mg of calcium. Seclusion during the COVID-19 pandemic may have contributed to the severity of the findings. Therefore, we recommend screening children undergoing growth spurts for vitamin D, calcium, and poor lifestyle habits during and after the pandemic.Keywords: bone mass, vitamin D, puberty, Hispanic
Procedia PDF Downloads 1331013 Application of Hydrogen Peroxide and Polialuminum Chloride to Treat Palm Oil Mill Wastewater by Electrocoagulation
Authors: M. Nasrullah, Siti Norsita, Lakhveer Singh, A. W. Zulrisam, Mimi Sakinah
Abstract:
The purposes of this study were to investigate the effects of polyaluminum chloride (PAC) and hydrogen peroxide on COD removal by electrocoagulation. The current density was varied between 30-80 mA cm−2, polyaluminum chloride (1-3 g L-1) as coagulant aid and 1 and 2 percent of hydrogen peroxide as an oxidizing agent. It has been shown that 86.67% of COD was removed by the iron electrode in 180 min while 81.11% of COD was removed by the aluminum electrode in 210 min which indicate that iron was more effective than aluminum. As much as 88.25% COD was removed by using 80 mA cm−2 as compared to 72.86% by using 30 mA cm−2 in 240 min. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The highest removal efficiency of 95.08% was achieved by adding 2% of H2O2 in addition of 3 g L−1 PAC. The general results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30-80 mAcm-2 depending on the concentration of H2O2 and coagulant aid.Keywords: electrocaogulation, palm oil mill effluent, hydrogen peroxide, polialuminum chloride, chemical oxygen demand
Procedia PDF Downloads 4221012 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling
Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça
Abstract:
This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy
Procedia PDF Downloads 3091011 The Application of New Ligands including Different Atoms and Evaluation of Their Nucleophile Effects against Various Metals
Authors: Saman Hajmohamadi, Sohrab Hajmohamadi
Abstract:
The objectives of this experiment were to investigate the application of new ligands including different atoms and evaluation of their nucleophile effects against various metals. Chemistry researchers are really interested in this field. From among various ligands, there are some ligands with different coordinating ligands as well. There are great number of intermediate complexes and major elements of organic compositions with various atoms. There is a regular adding of new compositions. Complexes are the most important chemical combinations with various catalysts and biological, medicinal and other applications. Those complexes with ligands including different atom givers are really important and their synthesis could solve most of chemical problems. Supplying of new ligands is an important and key part of coordination chemistry which may cause some varieties and different properties in complexes with equal central nucleus. As a result, this research has evaluated new ligands including different coordination atoms, such as oxygen, nitrogen etc. along with their behavior against various metals like copper, nickel, iron etc.Keywords: ligands, nucleophile, iron, cobalt, copper
Procedia PDF Downloads 2031010 Separation of Rare-Earth Metals from E-Wastes
Authors: Gulsara Akanova, Akmaral Ismailova, Duisek Kamysbayev
Abstract:
The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method.Keywords: dissolution of the magnet, Neodymium magnet, rare earth metals, separation, Sorption
Procedia PDF Downloads 2091009 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites
Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga
Abstract:
One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design
Procedia PDF Downloads 2571008 Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation
Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song
Abstract:
Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation
Procedia PDF Downloads 1651007 Association between Copper Uptake and Decrease of Copper (hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa
Authors: Khaled Khleifat, Muayyad Abboud, Amjad Khleifat, Humodi Saeed
Abstract:
In this study, Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillusthuringiensis strain Israelisas well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis andEnterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.Keywords: pseudomonas, Cu uptake, burn patients, biosorption
Procedia PDF Downloads 3921006 The Effect of Vitamin D Deficiency on Endothelial Function in Atherosclerosis Patients Living in Saudi Arabia
Authors: Wedad Azhar
Abstract:
Vitamin D is an essential fat-soluble vitamin that is required for the maintenance of good health. It is obtained either through exposure to sunlight (ultraviolet B radiation) or through dietary sources. The role of vitamin D is beyond bone health. Indeed, it plays a critical role in the immune system and a broad range of organ functions such as the cardiovascular system. Moreover, vitamin D plays a critical role in the endothelial function, which is one of the main indicators of atherosclerosis. This study is investigating the correlation between vitamin D status and endothelial function in preventing and treating atherosclerosis especially in country that has ample of sunshine but yet, Saudis from suffering from this issue vitamin D deficiency and insufficiency. Ninety participants from both genders and aged 40 to 60will be involved. The participants will be categorised into three groups: the control group will be healthy persons, patients at risk of developing atherosclerosis, patients formally diagnosed atherosclerosis. Half of the participants in each group should already have been taking vitamin D supplementations. Fasting blood samples will be taken from the participants for biochemical assays. Endothelial function will be assist by flow-mediated dilation of the brachial artery. Participants will be asked to complete a questionnaire on their social and economic status, education level, daily exposure to sunlight, smoking status, consumption of supplements and medication, and a food frequency of vitamin D intake. The data will be analysed using SPSS.Keywords: atherosclerosis, endothelial function, nutrition, vitamin D
Procedia PDF Downloads 2941005 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages
Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai
Abstract:
Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer
Procedia PDF Downloads 1451004 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal
Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction
Procedia PDF Downloads 2601003 Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study
Authors: Natália Botica, Luís Luís, Paulo Bernardes
Abstract:
The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated.Keywords: rock art, archaeology, iron age, 3D models
Procedia PDF Downloads 831002 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions
Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs
Abstract:
Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.Keywords: biological waste, sorption, metal ions, ferrofluid
Procedia PDF Downloads 1411001 Value-Added Products from Recycling of Solid Waste in Steel Plants
Authors: B. Karthik Vasan, Rachil Maliwal, Somnath Basu
Abstract:
Generation of solid waste is a major problem confronting the iron and steel industry around the world. Disposal of untreated wastes is no longer a viable solution in view of the environmental regulations becoming more and more stringent, as well as an increase in community awareness about the long-term hazards of indiscriminate waste disposal. The current work explores the possibility of converting some of the ‘problematic’ solid wastes generated during steel manufacturing operations, viz. dust from primary steelmaking, iron ore handling, and flux calcination processes, into value-added products instead of environmentally hazardous disposal practices. It was possible to develop a synthetic calcium ferrite, which helped to enhance the dissolution of calcined basic fluxes (e.g. CaO) and reduce the overall energy consumption during steel making. This, in turn, increased process efficiency and reduced greenhouse gas emissions. The preliminary results from laboratory-scale experiments clearly demonstrate the potential of utilizing these ‘waste materials’ that are generated in-house in iron and steel manufacturing plants. The energy required for synthesis of the ferrite may be reduced further by partially utilizing the waste heat from the exhaust gases. In the longer run, it would result in significant financial benefits due to reduced dependence on purchased fluxes. The synthesized ferrite is non-hygroscopic and this provides an additional benefit during its storage and transportation, relative to calcined lime (CaO) that is widely used as a basic flux across the steel making industry.Keywords: calcium ferrite, flux, slag formation, solid waste
Procedia PDF Downloads 2141000 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study
Authors: Ashish Kumar Agrahari, Amit Kumar
Abstract:
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA
Procedia PDF Downloads 145999 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells
Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour
Abstract:
High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties
Procedia PDF Downloads 456998 Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates
Authors: O. Balamane-Zizi, L. M. Rouidi, A. Boukhrissa, N. Daas, H. Ait-amar
Abstract:
The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates.Keywords: landfill leachates, COD, physical-chemical treatment, biological treatment
Procedia PDF Downloads 473997 Diversity of Microbial Ground Improvements
Authors: V. Ivanov, J. Chu, V. Stabnikov
Abstract:
Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.Keywords: ground improvement, biocementation, biogrouting, microorganisms
Procedia PDF Downloads 229