Search results for: cell temperature
7067 Distribution and Characterization of Thermal Springs in Northern Oman
Authors: Fahad Al Shidi, Reginald Victor
Abstract:
This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.Keywords: alkaline springs, geothermal, HSG, ophiolite
Procedia PDF Downloads 1457066 Monte Carlo Risk Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis, Pagone Emanuele
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5 cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbo machinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50 % cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low temperature heat exchanger LTHX (referred to by some authors as air pre-heater the mixed conductive membrane responsible for oxygen transfer and the high temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. This paper discusses techno-economic analysis of four possible layouts of the AZEP cycle. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout) – AZEP 85 % (85 % CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine– AZEP 85 % (85 % CO2 capture). This paper discusses Montecarlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gases, power plants
Procedia PDF Downloads 4737065 Micro-Ribonucleic Acid-21 as High Potential Prostate Cancer Biomarker
Authors: Regina R. Gunawan, Indwiani Astuti, H. Raden Danarto
Abstract:
Cancer is the leading cause of death worldwide. Cancer is caused by mutations that alter the function of normal human genes and give rise to cancer genes. MicroRNA (miRNA) is a small non-coding RNA that regulates the gen through complementary bond towards mRNA target and cause mRNA degradation. miRNA works by either promoting or suppressing cell proliferation. miRNA level expression in cancer may offer another value of miRNA as a biomarker in cancer diagnostic. miRNA-21 is believed to have a role in carcinogenesis by enhancing proliferation, anti-apoptosis, cell cycle progression and invasion of tumor cells. Hsa-miR-21-5p marker has been identified in Prostate Cancer (PCa) and Benign Prostatic Hyperplasia (BPH) patient’s urine. This research planned to explore the diagnostic performance of miR-21 to differentiate PCa and BPH patients. In this study, urine samples were collected from 20 PCa patients and 20 BPH patients. miR-21 relative expression against the reference gene was analyzed and compared between the two. miRNA expression was analyzed using the comparative quantification method to find the fold change. miR-21 validity in identifying PCa patients was performed by quantifying the sensitivity and specificity with the contingency table. miR-21 relative expression against miR-16 in PCa patient and in BPH patient has 12,98 differences in fold change. From a contingency table of Cq expression of miR-21 in identifying PCa patients from BPH patient, Cq miR-21 has 100% sensitivity and 75% specificity. miR-21 relative expression can be used in discriminating PCa from BPH by using a urine sample. Furthermore, the expression of miR-21 has higher sensitivity compared to PSA (Prostate specific antigen), therefore miR-21 has a high potential to be analyzed and developed more.Keywords: benign prostate hyperplasia, biomarker, miRNA-21, prostate cancer
Procedia PDF Downloads 1597064 The Value of Serum Procalcitonin in Patients with Acute Musculoskeletal Infections
Authors: Mustafa Al-Yaseen, Haider Mohammed Mahdi, Haider Ali Al–Zahid, Nazar S. Haddad
Abstract:
Background: Early diagnosis of musculoskeletal infections is of vital importance to avoid devastating complications. There is no single laboratory marker which is sensitive and specific in diagnosing these infections accurately. White blood cell count, erythrocyte sedimentation rate, and C-reactive protein are not specific as they can also be elevated in conditions other than bacterial infections. Materials Culture and sensitivity is not a true gold standard due to its varied positivity rates. Serum Procalcitonin is one of the new laboratory markers for pyogenic infections. The objective of this study is to assess the value of PCT in the diagnosis of soft tissue, bone, and joint infections. Patients and Methods: Patients of all age groups (seventy-four patients) with a diagnosis of musculoskeletal infection are prospectively included in this study. All patients were subjected to White blood cell count, erythrocyte sedimentation rate, C-reactive protein, and serum Procalcitonin measurements. A healthy non infected outpatient group (twenty-two patients) taken as a control group and underwent the same evaluation steps as the study group. Results: The study group showed mean Procalcitonin levels of 1.3 ng/ml. Procalcitonin, at 0.5 ng/ml, was (42.6%) sensitive and (95.5%) specific in diagnosing of musculoskeletal infections with (positive predictive value of 87.5% and negative predictive value of 48.3%) and (positive likelihood ratio of 9.3 and negative likelihood ratio of 0.6). Conclusion: Serum Procalcitonin, at a cut – off of 0.5 ng/ml, is a specific but not sensitive marker in the diagnosis of musculoskeletal infections, and it can be used effectively to rule in the diagnosis of infection but not to rule out it.Keywords: procalcitonin, infection, labratory markers, musculoskeletal
Procedia PDF Downloads 1657063 Surface Adjustments for Endothelialization of Decellularized Porcine Pericardium
Authors: M. Markova, E. Filova, O. Kaplan, R. Matejka, L. Bacakova
Abstract:
The porcine pericardium is used as a material for cardiac and aortic valves substitutes. Current biological aortic heart valve prosthesis have a limited lifetime period because they undergo degeneration. In order to make them more biocompatible and prolong their lifetime it is necessary to reseed the decellularized prostheses with endothelial cells and with valve interstitial cells. The endothelialization of the prosthesis-surface may be supported by suitable chemical surface modification of the prosthesis. The aim of this study is to prepare bioactive fibrin layers which would both support endothelialization of porcine pericardium and enhance differentiation and maturation of the endothelial cells seeded. As a material for surface adjustments we used layers of fibrin with/without heparin and some of them with adsorbed or chemically bound FGF2, VEGF or their combination. Fibrin assemblies were prepared in 24-well cell culture plate and were seeded with HSVEC (Human Saphenous Vein Endothelial Cells) at a density of 20,000 cells per well in EGM-2 medium with 0.5% FS and without heparin, without FGF2 and without VEGF; medium was supplemented with aprotinin (200 U/mL). As a control, surface polystyrene (PS) was used. Fibrin was also used as homogeneous impregnation of the decellularized porcine pericardium throughout the scaffolds. Morphology, density, and viability of the seeded endothelial cells were observed from micrographs after staining the samples by LIVE/DEAD cytotoxicity/viability assay kit on the days 1, 3, and 7. Endothelial cells were immunocytochemically stained for proteins involved in cell adhesion, i.e. alphaV integrin, vinculin, and VE-cadherin, markers of endothelial cells differentiation and maturation, i.e. von Willebrand factor and CD31, and for extracellular matrix proteins typically produced by endothelial cells, i.e. type IV collagen and laminin. The staining intensities were subsequently quantified using a software. HSVEC cells grew on each of the prepared surfaces better than on control surface. They reached confluency. The highest cell densities were obtained on the surface of fibrin with heparin and both grow factors used together. Intensity of alphaV integrins staining was highest on samples with remained fibrin layer, i.e. on layers with lower cell densities, i.e. on fibrin without heparin. Vinculin staining was apparent, but was rather diffuse, on fibrin with both FGF2 and VEGF and on control PS. Endothelial cells on all samples were positively stained for von Willebrand factor and CD31. VE-cadherin receptors clusters were best developed on fibrin with heparin and growth factors. Significantly stronger staining of type IV collagen was observed on fibrin with heparin and both growth factors. Endothelial cells on all samples produced laminin-1. Decellularized pericardium was homogeneously filled with fibrin structures. These fibrin-modified pericardium samples will be further seeded with cells and cultured in a bioreactor. Fibrin layers with/without heparin and with adsorbed or chemically bound FGF2, VEGF or their combination are good surfaces for endothelialization of cardiovascular prostheses or porcine pericardium based heart valves. Supported by the Ministry of Health, grants No15-29153A and 15-32497A, and the Grant Agency of the Czech Republic, project No. P108/12/G108.Keywords: aortic valves prosthesis, FGF2, heparin, HSVEC cells, VEGF
Procedia PDF Downloads 2677062 Isolation and Transplantation of Hepatocytes in an Experimental Model
Authors: Inas Raafat, Azza El Bassiouny, Waldemar L. Olszewsky, Nagui E. Mikhail, Mona Nossier, Nora E. I. El-Bassiouni, Mona Zoheiry, Houda Abou Taleb, Noha Abd El-Aal, Ali Baioumy, Shimaa Attia
Abstract:
Background: Orthotopic liver transplantation is an established treatment for patients with severe acute and end-stage chronic liver disease. The shortage of donor organs continues to be the rate-limiting factor for liver transplantation throughout the world. Hepatocyte transplantation is a promising treatment for several liver diseases and can, also, be used as a "bridge" to liver transplantation in cases of liver failure. Aim of the work: This study was designed to develop a highly efficient protocol for isolation and transplantation of hepatocytes in experimental Lewis rat model to provide satisfactory guidelines for future application on humans.Materials and Methods: Hepatocytes were isolated from the liver by double perfusion technique and bone marrow cells were isolated by centrifugation of shafts of tibia and femur of donor Lewis rats. Recipient rats were subjected to sub-lethal dose of irradiation 2 days before transplantation. In a laparotomy operation the spleen was injected by freshly isolated hepatocytes and bone marrow cells were injected intravenously. The animals were sacrificed 45 day latter and splenic sections were prepared and stained with H & E, PAS AFP and Prox1. Results: The data obtained from this study showed that the double perfusion technique is successful in separation of hepatocytes regarding cell number and viability. Also the method used for bone marrow cells separation gave excellent results regarding cell number and viability. Intrasplenic engraftment of hepatocytes and live tissue formation within the splenic tissue were found in 70% of cases. Hematoxylin and eosin stained splenic sections from 7 rats showed sheets and clusters of cells among the splenic tissues. Periodic Acid Schiff stained splenic sections from 7 rats showed clusters of hepatocytes with intensely stained pink cytoplasmic granules denoting the presence of glycogen. Splenic sections from 7 rats stained with anti-α-fetoprotein antibody showed brownish cytoplasmic staining of the hepatocytes denoting positive expression of AFP. Splenic sections from 7 rats stained with anti-Prox1 showed brownish nuclear staining of the hepatocytes denoting positive expression of Prox1 gene on these cells. Also, positive expression of Prox1 gene was detected on lymphocytes aggregations in the spleens. Conclusions: Isolation of liver cells by double perfusion technique using collagenase buffer is a reliable method that has a very satisfactory yield regarding cell number and viability. The intrasplenic route of transplantation of the freshly isolated liver cells in an immunocompromised model was found to give good results regarding cell engraftment and tissue formation. Further studies are needed to assess function of engrafted hepatocytes by measuring prothrombin time, serum albumin and bilirubin levels.Keywords: Lewis rats, hepatocytes, BMCs, transplantation, AFP, Prox1
Procedia PDF Downloads 3177061 Antioxidant Effects of C-Phycocyanin on Oxidized Astrocyte in Brain Injury Using 2D and 3D Neural Nanofiber Tissue Model
Authors: Seung Ju Yeon, Seul Ki Min, Jun Sang Park, Yeo Seon Kwon, Hoo Cheol Lee, Hyun Jung Shim, Il-Doo Kim, Ja Kyeong Lee, Hwa Sung Shin
Abstract:
In brain injury, depleting oxidative stress is the most effective way to reduce the brain infarct size. C-phycocyanin (C-Pc) is a well-known antioxidant protein that has neuroprotective effects obtained from green microalgae. Astrocyte is glial cell that supports the nerve cell such as neuron, which account for a large portion of the brain. In brain injury, such as ischemia and reperfusion, astrocyte has an important rule that overcomes the oxidative stress and protect from brain reactive oxygen species (ROS) injury. However little is known about how C-Pc regulates the anti-oxidants effects of astrocyte. In this study, when the C-Pc was treated in oxidized astrocyte, we confirmed that inflammatory factors Interleukin-6 and Interleukin-3 were increased and antioxidants enzyme, Superoxide dismutase (SOD) and catalase was upregulated, and neurotrophic factors, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) was alleviated. Also, it was confirmed to reduce infarct size of the brain in ischemia and reperfusion because C-Pc has anti-oxidant effects in middle cerebral artery occlusion (MCAO) animal model. These results show that C-Pc can help astrocytes lead neuroprotective activities in the oxidative stressed environment of the brain. In summary, the C-PC protects astrocytes from oxidative stress and has anti-oxidative, anti-inflammatory, neurotrophic effects under ischemic situations.Keywords: c-phycocyanin, astrocyte, reactive oxygen species, ischemia and reperfusion, neuroprotective effect
Procedia PDF Downloads 3217060 Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy
Authors: Dipranjan Laha, Parimal Karmakar
Abstract:
Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India.Keywords: nanoparticle, autophagy, apoptosis, siRNA-mediated inhibition
Procedia PDF Downloads 4417059 Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition Inhibits by INT3 & Quercetin in MCF7 Cell Lines
Authors: D. Pradhan, G. Tripathy, S. Pradhan
Abstract:
Objectives: Imperviousness gainst estrogen treatments is a noteworthy reason for infection backslide and mortality in estrogen receptor alpha (ERα)- positive breast diseases. Tamoxifen or estrogen withdrawal builds the reliance of breast malignancy cells on INT3 flagging. Here, we researched the commitment of Quercetin and INT3 motioning in endocrine-safe breast tumor cells. Methods: We utilized two models of endocrine treatments safe (ETR) breast tumor: Tamoxifen-safe (TamR) and long haul estrogen-denied (LTED) MCF7 cells. We assessed the transitory and intrusive limit of these cells by Transwell cells. Articulation of epithelial to mesenchymal move (EMT) controllers and in addition INT3 receptors and targets were assessed by constant PCR and western smudge investigation. Besides, we tried in-vitro hostile to Quercetin monoclonal Antibodies (mAbs) and Gamma Secretase Inhibitors (GSIs) as potential EMT inversion remedial specialists. At last, we created stable Quercetin overexpressing MCF7 cells and assessed their EMT components and reaction to Tamoxifen. Results: We found that ETR cells procured an Epithelial to Mesenchymal move (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we distinguished more elevated amount of INT3 however lower levels of INT1 and INT3 proposing a change to motioning through distinctive INT3 receptors after obtaining of resistance. Against Quercetin monoclonal antibodies and the GSI PF03084014 were powerful in obstructing the Quercetin/INT3 pivot and in part repressing the EMT process. As a consequence of this, cell relocation and attack were weakened and the immature microorganism like populace was essentially decreased. Hereditary hushing of Quercetin and INT3 prompted proportionate impacts. At long last, stable overexpression of Quercetin was adequate to make MCF7 lethargic to Tamoxifen by INT3 initiation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives intrusive conduct. Hostile to Quercetin mAbs and GSI PF03084014 lessen articulation of EMT particles decreasing cell obtrusiveness. Quercetin overexpression instigates Tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and INT3 warrants further clinical Correlation as substantial restorative methodologies in endocrine-safe breast.Keywords: endocrine, epithelial, mesenchymal, INT3, quercetin, MCF7
Procedia PDF Downloads 3077058 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand
Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui
Abstract:
Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage
Procedia PDF Downloads 5637057 Antioxidant Activity of Probiotic Lactic Acid Bacteria and Their Application in Fermented Milk Products
Authors: Vitheejongjaroen P., Jaisin Y., Pachekrepapol U., Taweechotipatr M.
Abstract:
Lactic acid bacteria (LAB) are the most common type of microorganisms that had been used as probiotics also known for many beneficial health effects. The antioxidant activity of LAB is associated with numerous health-protective effects. This research aimed to investigate the antioxidant activity of lactic acid bacteria isolated from Thai sour pork sausage for their application in fermented milk products. Antioxidant activity determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed that the isolate FN33-7, as 1 of 8 isolated exhibited scavenging activity in intact cell 5-7%, and supernatant 13-16%, intracellular cell free extract 42-48% respectively. This isolate was identified using 16S ribosomal DNA sequence analysis as Lactobacillus plantarum. The effect of milk fermented with L. plantarum FN33-7 on microbial count, pH and syneresis was assessed during refrigerated storage period of 28 days. The strain showed increased viability, pH level decreased, while syneresis increased. These results are similar to dairy products fermented with commercial starter cultures. Additionally, microstructure analysis of fermented milk by fluorescent microscopy showed that curd structure appeared to be dense and less porous in this fermented milk than commercial yogurt. The results of this study indicated that L. plantarum FN33-7 was a good probiotic candidate to be used in cultured milk products to reduce the risk of diseases caused by oxidative stress.Keywords: Lactobacillus plantarum, probiotics, free radical, antioxidant, oxidative stress, fermented milk products
Procedia PDF Downloads 1337056 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 1517055 Investigation of the Drying Times of Blood under Different Environmental Conditions and on Different Fabrics and the Transfer of Blood at Different Times of the Drying Process
Authors: Peter Parkinson
Abstract:
The research investigates the effects of temperature, humidity, wind speed, and fabric composition on the drying times of blood and assesses the degree of blood transfer that can occur during the drying process. An assortment of fabrics, of different composition and thicknesses, were collected and stained using two blood volumes and exposed to varying environmental conditions. The conclusion reached was that temperature, humidity, wind speed, and fabric thickness do have an effect on drying times. An increase in temperature and wind speed results in a decrease in drying times while an increase in fabric thickness and humidity extended the drying times of blood under similar conditions. Transfer experimentation utilized three donor fabrics, 100% white cotton, 100% acrylic, and 100% cotton denim, which were bloodstained using two blood volumes. The fabrics were subjected to both full and low/light force contact from the donor fabrics onto the recipient fabric, under different environmental conditions. Transfer times onto the 100% white cotton (recipient fabric) from all donor fabrics were shorter than the drying times observed. The intensities of the bloodstains decreased from high to low with time during the drying process. The degree of transfer at high, medium, and low intensities varied significantly between different materials and is dependent on the environmental conditions, fabric compositions, blood volumes, the type of contact (full or light force), and the drying times observed for the respective donor fabrics. These factors should be considered collectively and conservatively when assessing the time frame of secondary transfer in casework.Keywords: blood, drying time, blood stain transfer, different environmental conditions, fabrics
Procedia PDF Downloads 1567054 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 3217053 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress
Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira
Abstract:
Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation
Procedia PDF Downloads 2197052 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells
Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo
Abstract:
Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.Keywords: biosensors, polymer, skin irritation, degradation products, cell viability
Procedia PDF Downloads 1417051 Clay Effect on PET/Clay and PEN/Clay Nanocomposites Properties
Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour
Abstract:
Reinforced plastics or nanocomposites have attracted considerable attention in scientific and industrial fields because a very small amount of clay can significantly improve the properties of the polymer. The polymeric matrices used in this work are two saturated polyesters, i.e., polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The success of processing compatible blends, based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalene) (PEN)/clay nanocomposites in one step by reactive melt extrusion is described. Untreated clay was first purified and functionalized ‘in situ’ with a compound based on an organic peroxide/ sulfur mixture and (tetramethylthiuram disulfide) as the activator for sulfur. The PET and PEN materials were first separately mixed in the molten state with functionalized clay. The PET/4 wt% clay and PEN/7.5 wt% clay compositions showed total exfoliation. These compositions, denoted nPET and nPEN, respectively, were used to prepare new n(PET/PEN) nanoblends in the same mixing batch. The n(PET/PEN) nanoblends were compared to neat PET/PEN blends. The blends and nanocomposites were characterized using various techniques. Microstructural and nanostructural properties were investigated. Fourier transform infrared spectroscopy (FTIR) results showed that the exfoliation of tetrahedral clay nanolayers is complete, and the octahedral structure totally disappears. It was shown that total exfoliation, confirmed by wide-angle X-ray scattering (WAXS) measurements, contributes to the enhancement of impact strength and tensile modulus. In addition, WAXS results indicated that all samples are amorphous. The differential scanning calorimetry (DSC) study indicated the occurrence of one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition.Keywords: exfoliation, DRX, DSC, montmorillonite, nanocomposites, PEN, PET, plastograph, reactive melt-mixing
Procedia PDF Downloads 3287050 Effect of Moisture Removal from Molten Salt on Corrosion of Alloys
Authors: Bhavesh D. Gajbhiye, Divya Raghunandanan, C. S. Sona, Channamallikarjun S. Mathpati
Abstract:
Molten fluoride salt FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a promising candidate as high temperature coolant for next generation nuclear reactors due to its superior thermophysical properties. Corrosion of alloys in molten FLiNaK has however been recognized as a serious issue in the selection of structural materials. Corrosion experiments of alloys Inconel-625 (Fe-Ni alloy) and Hastelloy-B (Ni-Mo alloy) were performed in FLiNaK salt. The tests were carried out at a temperature of 650°C in graphite crucibles for 60 hours under inert atmosphere. Corrosion experiments were performed to study the effect of moisture removal in the salt by pre heating and vacuum drying. Weight loss of the alloy samples due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloy samples was analyzed by Scanning Electron Microscopy. A significant decrease in the corrosion rate was observed for the alloys studied in moisture removed salt.Keywords: FLiNaK, hastelloy, inconel, weight loss
Procedia PDF Downloads 4967049 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries
Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera
Abstract:
In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes
Procedia PDF Downloads 2647048 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass
Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel
Abstract:
Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.Keywords: sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition
Procedia PDF Downloads 3117047 WT1 Exprassion in Malignant Surface Epithelial Ovarian Tumors
Authors: Mahmoodreza Tahamtan
Abstract:
Background: Malignant surface epithelial ovarian tumors (SEOT) account for approximately 90% of primary ovarian cancer. Wilms tumor gene (WT1) product was defined as a tumor suppressor gene, but today it is considered capable of performing oncogenic functions. There seems to be differences in WT1 expression patterns among SEOT subtypes. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Materials and Methods: Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors, 3 mucinous cystadenocarcinomas, 10 borderline mucinous tumors, 7 endometrioid ovarian carcinomas, 3 clear cell carcinomas, 1 malignant Brenner tumor, 2 metastatic adenocarcinomas, and 6 endometrial adenocarcinomas. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Results: Of the 35 cases of ovarian serous cystadenocarcinoma, 30(85.7%) were diffusely positive (3+,4+),4 showed reactivity of < 50% of the tumor cells (1+,2+), and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. All the mucinous tumors(n:13), endometrioid carcinomas (n: 7), clear cell carcinomas (n: 3), metastatic adenocarcinomas (n: 2) and primary endometrial carcinomas (n:6) were negative. The single malignant Brenner tumor showed a positive reaction for WT1(4+) Conclusion: WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors (especially endometrioid subtype) and metastatic carcinomas (especially endometrial serous carcinoma), other than malignant mesothelioma. We cannot rely to the degree of expression inorder to separate high grade borderline serous tumors from low grade ones.Keywords: WT1, ovary, epithelial tumors, malignant
Procedia PDF Downloads 1047046 Effect of Solvents in the Extraction and Stability of Anthocyanin from the Petals of Caesalpinia pulcherrima for Natural Dye-Sensitized Solar Cell
Authors: N. Prabavathy, R. Balasundaraprabhu, S. Shalini, Dhayalan Velauthapillai, S. Prasanna, N. Muthukumarasamy
Abstract:
Dye sensitized solar cell (DSSC) has become a significant research area due to their fundamental and scientific importance in the area of energy conversion. Synthetic dyes as sensitizer in DSSC are efficient and durable but they are costlier, toxic and have the tendency to degrade. Natural sensitizers contain plant pigments such as anthocyanin, carotenoid, flavonoid, and chlorophyll which promote light absorption as well as injection of charges to the conduction band of TiO2 through the sensitizer. But, the efficiency of natural dyes is not up to the mark mainly due to instability of the pigment such as anthocyanin. The stability issues in vitro are mainly due to the effect of solvents on extraction of anthocyanins and their respective pH. Taking this factor into consideration, in the present work, the anthocyanins were extracted from the flower Caesalpinia pulcherrima (C. pulcherrimma) with various solvents and their respective stability and pH values are discussed. The usage of citric acid as solvent to extract anthocyanin has shown good stability than other solvents. It also helps in enhancing the sensitization properties of anthocyanins with Titanium dioxide (TiO2) nanorods. The IPCE spectra show higher photovoltaic performance for dye sensitized TiO2nanorods using citric acid as solvent. The natural DSSC using citric acid as solvent shows a higher efficiency compared to other solvents. Hence citric acid performs to be a safe solvent for natural DSSC in boosting the photovoltaic performance and maintaining the stability of anthocyanins.Keywords: Caesalpinia pulcherrima, citric acid, dye sensitized solar cells, TiO₂ nanorods
Procedia PDF Downloads 2947045 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya
Authors: Khlifa El Atrash, Gabriel Assaf
Abstract:
Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load
Procedia PDF Downloads 3097044 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide
Authors: Satya Eswari Jujjavarapu, Swast Dhagat
Abstract:
Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide
Procedia PDF Downloads 2667043 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power
Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina
Abstract:
Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics
Procedia PDF Downloads 2267042 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour
Abstract:
Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.Keywords: apatite, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 1297041 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 2627040 Effects of Viscous Dissipation on Free Convection Boundary Layer Flow towards a Horizontal Circular Cylinder
Authors: Muhammad Khairul Anuar Mohamed, Mohd Zuki Salleh, Anuar Ishak, Nor Aida Zuraimi Md Noar
Abstract:
In this study, the numerical investigation of viscous dissipation on convective boundary layer flow towards a horizontal circular cylinder with constant wall temperature is considered. The transformed partial differential equations are solved numerically by using an implicit finite-difference scheme known as the Keller-box method. Numerical solutions are obtained for the reduced Nusselt number and the skin friction coefficient as well as the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number and Eckert number are analyzed and discussed. The results in this paper is original and important for the researchers working in the area of boundary layer flow and this can be used as reference and also as complement comparison purpose in future.Keywords: free convection, horizontal circular cylinder, viscous dissipation, convective boundary layer flow
Procedia PDF Downloads 4397039 Performance of Segmented Thermoelectric Materials Using 'Open-Short Circuit' Technique under Different Polarity
Authors: N. H. S. Mustafa, N. M. Yatim
Abstract:
Thermoelectric materials arrange in segmented design could increase the conversion of heat to electricity performance. This is due to the properties of materials that perform peak at narrow temperature range. Performance of the materials determines by dimensionless figure-of-merit, ZT which consist of thermoelectric properties namely Seebeck coefficient, electrical resistivity, and thermal conductivity. Since different materials were arrange in segmented, determination of ZT cannot be measured using the conventional approach. Therefore, this research used 'open-short circuit' technique to measure the segmented performance. Segmented thermoelectric materials consist of bismuth telluride, and lead telluride was segmented together under cold press technique. The results show thermoelectric properties measured is comparable with calculated based on commercially available of individual material. Performances of segmented sample under different polarity also indicate dependability of material with position and temperature. Segmented materials successfully measured under real condition and optimization of the segmented can be designed from the study of polarity change.Keywords: thermoelectric, segmented, ZT, polarity, performance
Procedia PDF Downloads 2027038 Taraxacum Officinale (Dandelion) and Its Phytochemical Approach to Malignant Diseases
Authors: Angel Champion
Abstract:
Chemotherapy and radiation use an acidified approach to induce apoptosis, which only kills mature cancer cells while resulting in gene and cell damage with significant levels of toxicity in tumor-affected tissues and organs. The acid approach, where the cells exterminated are not differentiated, induces the disappearance of white blood cells from the blood. This increases susceptibility to infection in severe forms of cancer spread. However, chemotherapy and radiation cannot kill cancer stem cells that metastasize, being the leading cause of 98% of cancer fatalities. With over 12 million new cancer cases symptomatic each year, including common malignancies such as Hepatocellular Carcinoma (HCC), this study aims to assess the bioactive constituents and phytochemical composition of Taraxacum Officinale (Dandelion). This analysis enables pharmaceutical quality and potency to be applied to studies on cancer cell proliferation and apoptosis. A phytochemical screening is carried out to identify the antioxidant components of Dandelion root, stem, and flower extract. The constituents tested for are phlorotannins, carbohydrates, glycosides, saponins, flavonoids, alkaloids, sterols, triterpenes, and anthraquinone glycosides. To conserve the existing phenolic compounds, a portion of the constituent tests will be examined with an acid, alcohol, or aqueous solvent. As a result, the qualitative and quantitative variations within the Dandelion extract that measure uniform effective potency are vital to the conformity for producing medicinal products. These medicines will be constructed with a consistent, uniform composition that physicians can use to control and effectively eradicate malignant diseases safely. Taraxacum Officinale's phytochemical composition comprises a highly-graded potency due to present bioactive contents that will essentially drive out malignant disease within the human body. Its high potency rate is powerful enough to eliminate both mature cancer cells and cancer stem cells without the cell and gene damage induced by chemotherapy and radiation. Correspondingly, the high margins of cancer mortality on a global scale are mitigated. This remarkable contribution to modern therapeutics will essentially optimize the margins of natural products and their derivatives, which account for 50% of pharmaceuticals in modern therapeutics, while preventing the adverse effects of radiation and chemotherapy drugs.Keywords: antioxidant, apoptosis, metastasize, phytochemical, proliferation, potency
Procedia PDF Downloads 75