Search results for: outpatient treatment efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14040

Search results for: outpatient treatment efficiency

11010 Risk Factors and Biomarkers for the Recurrence of Ovarian Endometrioma: About the Immunoreactivity of Progesterone Receptor Isoform B and Nuclear Factor Kappa B.

Authors: Ae Ra Han, Taek Hoo Lee, Sun Zoo Kim, Hwa Young Lee

Abstract:

Introduction: Ovarian endometrioma is one of the important causes of poor ovarian reserve and up to half of them have recurred. However, the treatment for recurrence prevention has limited efficiency and repeated surgical management makes worsen the ovarian reserve. To find better management for recurrence prevention, we investigated risk factors and biomarkers for the recurrence of ovarian endometrioma. Methods: The medical records of women with the history of surgical dissection for ovarian endometrioma were collected. After exclusion of the cases with concurrent hysterectomy, been menopaused during follow-up, incomplete medical record, and loss of follow-up, a total of 134 women were enrolled. Immunohistochemical staining for progesterone receptor isoform B (PR-B) and nuclear factor kappa B (NFκB) was done with the fixed tissue blocks of their endometriomas which were collected at the time of surgery. Results: Severity of dysmenorrhea and co-existence of adenomyosis had significant correlation with recurrence of endometrioma. Increased PR-B (P = .041) and decreased NFκB (P = .036) immunoreactivity were found in recurrent group. Serum CA-125 level at the time of recurrence was higher than the highest level of CA-125 during follow-up in unrecurred group (55.6 vs. 21.3 U/mL, P = .014). Conclusion: We found that the severity of dysmenorrhea and coexistence of adenomyosis are risk factors for recurrence of ovarian endometrioma, and serial follow-up of CA-125 is effective to detect and prevent the recurrence. However, to determine the possibility of immunoreactivity of PR-B and NFκB as biomarkers for ovarian endometrioma, further studies of various races and large numbers with prospective design are needed.

Keywords: endometriosis, recurrence, biomarker, risk factor

Procedia PDF Downloads 550
11009 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.

Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment

Procedia PDF Downloads 453
11008 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 96
11007 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst

Procedia PDF Downloads 372
11006 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 76
11005 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model

Authors: Swarn Singh, Suruchi Singh

Abstract:

In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.

Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability

Procedia PDF Downloads 465
11004 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells

Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu

Abstract:

Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.

Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode

Procedia PDF Downloads 165
11003 Degradation of Polycyclic Aromatic Hydrocarbons-Contaminated Soil by Proxy-Acid Method

Authors: Reza Samsami

Abstract:

The aim of the study was to degradation of polycyclic aromatic hydrocarbons (PAHs) by proxy-acid method. The amounts of PAHs were determined in a silty-clay soil sample of an aged oil refinery field in Abadan, Iran. Proxy-acid treatment method was investigated. The results have shown that the proxy-acid system is an effective method for degradation of PAHs. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method. The results also demonstrated that the number of fused aromatic rings have not significant effects on PAH removal by proxy-acid method.

Keywords: proxy-acid treatment, silty-clay soil, PAHs, degradation

Procedia PDF Downloads 264
11002 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 152
11001 Responses of Trifolium pratense to Lead Accumulation Under In-Vitro Culture Conditions

Authors: Arash Khorasani Esmaeili, Rosna Mat Taha, Sadegh Mohajer

Abstract:

Seeds of Trifolium pratense (Red clover) were exposed in vitro for 6 weeks to six levels of lead (Pb) concentrations (0, 50, 100, 150, 200, 250 µM) to analyze the effects on growth, total chlorophyll and total protein contents of grown plants against the lead accumulation. The growth of plants was negatively affected by various levels of lead treatment. The fresh and dry weights, as well as lengths of shoots and roots of grown plants under various lead treatments, were found significantly lower in comparison with the control plants. Total chlorophyll and total soluble protein contents of grown plants under lower concentrations of lead treatment did not show significant differences when compared with the control plants, although they were affected significantly in higher levels of lead accumulation (150-250 µM).

Keywords: trifolium pratense, lead accumulation, chlorophyll content, protein content

Procedia PDF Downloads 435
11000 Toxic Activity of Biopesticide Metarhizium anisopliae var acridium ‘Green Muscle’ on the Cuticle of the Desert Locust Schistocerca gegaria (Forskål, 1775)

Authors: F. Haddadj, F. Acheuk, S. Hamdi, S. Zenia, A. Smai, H. Saadi, B. Doumandji-Mitiche

Abstract:

Locust is causing significant losses in agricultural production in the countries concerned by the invasion. Up to the present control strategy has consisted only of the spreaders chemicals; they have proven harmful to the environment and taking a conscience prompted researchers and institutions to lean towards the biological control based mostly by using microorganism. It is in that sense is we've made our contribution by the use of a biopesticide which is entomopathogenic fungus Metarhizium anisopliae var acridium ‘Green Muscle’ on part of the cuticle the larval of fifth instar locust Schistocerca gregaria. Preliminary test on the study of the pathogenicity of the bio-control agent, was conducted in the laboratory on L5 S. gregaria, on which we inoculated treatment by direct spraying of the cuticle, 5 days after treatment individuals are sacrificed. Microscopic observation revealed alterations in the architecture of the cuticle which leads to disorganization of cell layers.

Keywords: biopesticide, cuticle, desert locust, effect

Procedia PDF Downloads 412
10999 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 368
10998 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model

Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob

Abstract:

Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.

Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus

Procedia PDF Downloads 147
10997 Fabrication of Hollow Germanium Spheres by Dropping Method

Authors: Kunal D. Bhagat, Truong V. Vu, John C. Wells, Hideyuki Takakura, Yu Kawano, Fumio Ogawa

Abstract:

Hollow germanium alloy quasi-spheres of diameters 1 to 2 mm with a relatively smooth inner and outer surface have been produced. The germanium was first melted at around 1273 K and then exuded from a coaxial nozzle into an inert atmosphere by argon gas supplied to the inner nozzle. The falling spheres were cooled by water spray and collected in a bucket. The spheres had a horn type of structure on the outer surface, which might be caused by volume expansion induced by the density difference between solid and gas phase. The frequency of the sphere formation was determined from the videos to be about 133 Hz. The outer diameter varied in the range of 1.3 to 1.8 mm with a wall thickness in the range of 0.2 to 0.5 mm. Solid silicon spheres are used for spherical silicon solar cells (S₃CS), which have various attractive features. Hollow S₃CS promise substantially higher energy conversion efficiency if their wall thickness can be kept to 0.1–0.2 mm and the inner surface can be passivated. Our production of hollow germanium spheres is a significant step towards the production of hollow S₃CS with, we hope, higher efficiency and lower material cost than solid S₃CS.

Keywords: hollow spheres, semiconductor, compound jet, dropping method

Procedia PDF Downloads 204
10996 Effects of Plasma Technology in Biodegradable Films for Food Packaging

Authors: Viviane P. Romani, Bradley D. Olsen, Vilásia G. Martins

Abstract:

Biodegradable films for food packaging have gained growing attention due to environmental pollution caused by synthetic films and the interest in the better use of resources from nature. Important research advances were made in the development of materials from proteins, polysaccharides, and lipids. However, the commercial use of these new generation of sustainable materials for food packaging is still limited due to their low mechanical and barrier properties that could compromise the food quality and safety. Thus, strategies to improve the performance of these materials have been tested, such as chemical modifications, incorporation of reinforcing structures and others. Cold plasma is a versatile, fast and environmentally friendly technology. It consists of a partially ionized gas containing free electrons, ions, and radicals and neutral particles able to react with polymers and start different reactions, leading to the polymer degradation, functionalization, etching and/or cross-linking. In the present study, biodegradable films from fish protein prepared through the casting technique were plasma treated using an AC glow discharge equipment. The reactor was preliminary evacuated to ~7 Pa and the films were exposed to air plasma for 2, 5 and 8 min. The films were evaluated by their mechanical and water vapor permeability (WVP) properties and changes in the protein structure were observed using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Potential cross-links and elimination of surface defects by etching might be the reason for the increase in tensile strength and decrease in the elongation at break observed. Among the times of plasma application tested, no differences were observed when higher times of exposure were used. The X-ray pattern showed a broad peak at 2θ = 19.51º that corresponds to the distance of 4.6Å by applying the Bragg’s law. This distance corresponds to the average backbone distance within the α-helix. Thus, the changes observed in the films might indicate that the helical configuration of fish protein was disturbed by plasma treatment. SEM images showed surface damage in the films with 5 and 8 min of plasma treatment, indicating that 2 min was the most adequate time of treatment. It was verified that plasma removes water from the films once weight loss of 4.45% was registered for films treated during 2 min. However, after 24 h in 50% of relative humidity, the water lost was recovered. WVP increased from 0.53 to 0.65 g.mm/h.m².kPa after plasma treatment during 2 min, that is desired for some foods applications which require water passage through the packaging. In general, the plasma technology affects the properties and structure of fish protein films. Since this technology changes the surface of polymers, these films might be used to develop multilayer materials, as well as to incorporate active substances in the surface to obtain active packaging.

Keywords: fish protein films, food packaging, improvement of properties, plasma treatment

Procedia PDF Downloads 161
10995 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 197
10994 Non-Adherence to Antidepressant Treatment and Its Predictors among Outpatients with Depressive Disorders

Authors: Selam Mulugeta, Barkot Milkias, Mesfin Araya, Abel Worku, Eyasu Mulugeta

Abstract:

In Ethiopia, there is inadequate information on non-adherence to antidepressant treatment in patients with depressive disorders. Having awareness of the pattern of adherence is important in future prognosis, quality of life, and functionality in these patients. This hospital-based cross-sectional quantitative study was done on a sample of 216 consecutive outpatients with depressive disorders. Data were collected using questionnaires through in-person and phone call interviews. The 8-item Morisky scale was used to assess the pattern of medication adherence. Other specially developed tools were used to obtain sociodemographic and clinical information from electronic medical records and patient interviews. Data were analyzed using the Statistical Package for the Social Sciences Version - 25. Univariate and multivariable analyses were carried out to assess factors associated with non-adherence. 90% of the participants had a primary diagnosis of major depressive disorder. Based on the 8-item Morisky Medication Adherence Scale, the prevalence of non-adherence was found to be 84.7%. Living distance between 11 to 50 km from the hospital (AOR= 11, 95% CI (29,46.6)), post-secondary level of education (AOR= 8.3, 95% CI (1, 64.4)) and taking multiple medications (AOR= 6.1, 95% CI (1, 34.9)) were found to have significantly increased odds of non-adherence. Non-adherence was significantly associated with factors such as increased living distance from the hospital, relatively higher educational level, and polypharmacy. Proper and patient-centered psychoeducation, addressing the communication gap between patients and doctors, adherence to prescribing guidelines, avoiding polypharmacy unless indicated & working on accessibility of treatment is essential to decrease non-adherence.

Keywords: depressive disorders, Ethiopia, medication adherence, Addis Ababa

Procedia PDF Downloads 141
10993 Calculation of Organs Radiation Dose in Cervical Carcinoma External Irradiation Beam Using Day’s Methods

Authors: Yousif M. Yousif Abdallah, Mohamed E. Gar-Elnabi, Abdoelrahman H. A. Bakary, Alaa M. H. Eltoum, Abdelazeem K. M. Ali

Abstract:

The study was established to measure the amount of radiation outside the treatment field in external beam radiation therapy using day method of dose calculation, the data was collected from 89 patients of cervical carcinoma in order to determine if the dose outside side the irradiation treatment field for spleen, liver, both kidneys, small bowel, large colon, skin within the acceptable limit or not. The cervical field included mainly 4 organs which are bladder, rectum part of small bowel and hip joint these organ received mean dose of (4781.987±281.321), (4736.91±331.8), (4647.64±387.1) and (4745.91±321.11) respectively. The mean dose received by outfield organs was (77.69±15.24cGy) to large colon, (93.079±12.31cGy) to right kidney (80.688±12.644cGy) to skin, (155.86±17.69cGy) to small bowel. This was more significant value noted.

Keywords: radiation dose, cervical carcinoma, day’s methods, radiation medicine

Procedia PDF Downloads 413
10992 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source

Authors: Priya Tomar, Pallavi Mittal

Abstract:

Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.

Keywords: bioremediation, decolourization, black liquor, mycoremediation

Procedia PDF Downloads 407
10991 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines

Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu

Abstract:

At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.

Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction

Procedia PDF Downloads 98
10990 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis

Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal

Abstract:

Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.

Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage

Procedia PDF Downloads 150
10989 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio (φ), and batch extraction time (τ) with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs,, ψ, φ and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively.

Keywords: emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology

Procedia PDF Downloads 377
10988 Effect of Parenteral Administration of Vitamin A in Pregnant Dry Cows, on Vitamin A Status of Neonatal Calves

Authors: Samad Lotfollahzadeh

Abstract:

To evaluate the effect of intramuscular administration of vitamin A during dry period in pregnant dairy cows, which already received it in their daily ration, on vitamin A status of neonatal calves, a total of 30 cows were randomly selected and divided to two main groups; treatment and control group. Animals in the treatment group were subdivided into two groups. Single intramuscular injection of 2000000 IU vitamin A; was carried in 10 dairy cows at 7 months of pregnancy (group 1). In the second group of treated animals (10 cows) the injection was performed in 8 months of pregnancy (group 2). Ten pregnant dairy cows were received saline injection as placebo and selected as the control group. Blood samples were collected from experimental dairy cows at 7 and 8 months of pregnancy as well as their newborn calves’ pre and after colostrum intake. There was no significant difference between vitamin A and β- carotene concentration of dairy cows of three groups in two last months of pregnancy (P > 0.05). Vitamin A concentration of calves of two treatment groups before and after receiving of colostrum were significantly higher than that in the control group (P < 0.05). There was no significant difference between serum concentrations of vitamin A in calves of two treated groups (P > 0.05). β- Carotene concentration of serum samples of dairy cows and neonatal calves of three groups were not significantly different as compared with together. From results of the present study it can be concluded that daily supplementation of vitamin A in late pregnancy in dairy cows may not compensate the calves need for vitamin A and single injection of this vitamin A during dry either in 7 or 8 months of pregnancy can significantly increase level of vitamin A in their colostrum and neonatal calves.

Keywords: dry cow, beta carotene, newborn calves, vitamin A, dry cows

Procedia PDF Downloads 373
10987 Testing the Effectiveness of a Peer Facilitated Body Project Interventions Among Body Dissatisfied Young Women in China: A Randomized Control Trial

Authors: Todd Jackson

Abstract:

In this randomized control trial, we tested the effectiveness of a peer-facilitated version of the Body Project (BP) intervention among body-dissatisfied young women in China. Participants were randomly assigned to a peer-facilitator BP condition (N = 94) versus an educational video minimal intervention control condition (N = 89). Questionnaire measures of two primary outcomes (i.e., disordered eating and body dissatisfaction) and six secondary outcomes (thin-ideal internalization, pressure to be thin, negative affect, body surveillance, body shame, body appreciation and interest in cosmetic surgery) were administered at a pre-treatment baseline, a post-treatment assessment, and at a 12-month follow-up. A series of 2 (Group) x 2 (Time) analyses of variance indicated women in the peer-facilitated BP condition reported significant improvements in primary outcome measures of disordered eating and body dissatisfaction compared to women in the educational video control condition following treatment and at the 12-month follow-up. Furthermore, women in the peer-facilitated BP condition reported significant improvements in measures of body surveillance, body shame and body appreciation) compared to educational video controls that extended to the 12-month follow-up. Finally, although women in the peer-facilitated BP condition showed significant post-treatment improvements in thin-ideal internalization, negative affect, perceived pressure to be thin, and interest in cosmetic surgery compared to video controls, these differences were no longer statistically significant at the 12-month follow-up. In conclusion, findings supported the overall effectiveness of a peer-facilitated group version of the BP as an intervention for reducing disordered eating and several associated risk factors among at-risk young women in China.

Keywords: body project, disordered eating, body dissatisfaction, risk factors, prevention, China

Procedia PDF Downloads 63
10986 Study of Demographic, Hematological Profile and Risk Stratification in Chronic Myeloid Leukemia Patients

Authors: Rajandeep Kaur, Rajeev Gupta

Abstract:

Background: Chronic myeloid leukemia (CML) is the most common leukaemia in India. The annual incidence of chronic myeloid leukemia in India was originally reported to be 0.8 to 2.2 per 1,00,000 population. CML is a clonal disorder that is usually easily diagnosed because the leukemic cells of more than 95% of patients have a distinctive cytogenetic abnormality, the Philadelphia chromosome (Ph1). The approval of tyrosine kinase inhibitors (TKIs), which target BCR-ABL1 kinase activity, has significantly reduced the mortality rate associated with chronic myeloid leukemia (CML) and revolutionized treatment. Material and Methods: 80 diagnosed cases of CML were taken. Investigations were done. Bone marrow and molecular studies were also done and with EUTOS, patients were stratified into low and high-risk groups and then treatment with Imatinib was given to all patients and the molecular response was evaluated at 6 months and 12 months follow up with BCR-ABL by RT-PCR quantitative assay. Results: In the study population, out of 80 patients in the study population, 40 were females and 40 were males, with M: F is 1:1. Out of total 80 patients’ maximum patients (54) were in 31-60 years age group. Our study showed a most common symptom of presentation is abdominal discomfort followed by fever. Out of the total 80 patients, 25 (31.3%) patients had high EUTOS scores and 55 (68.8%) patients had low EUTOS scores. On 6 months follow up 36.3% of patients had Complete Molecular Response, 16.3% of patients had Major Molecular Response and 47.5% of patients had No Molecular Response but on 12 months follow up 71.3% of patients had Complete Molecular Response, 16.25% of patients had Major Molecular Response and 12.5% patients had No Molecular Response. Conclusion: In this study, we found a significant correlation between EUTOS score and Molecular response at 6 months and 12 months follow up after Imatinib therapy.

Keywords: chronic myeloid leukemia, European treatment and outcome study score, hematological response, molecular response, tyrosine kinase inhibitor

Procedia PDF Downloads 98
10985 Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents

Authors: Luísa P. Cruz-Lopes, Artur Figueirinha, Isabel Brás, Bruno Esteves

Abstract:

Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.

Keywords: chemical composition, lignocellulosic residues, ecotoxicological safety, wastewater

Procedia PDF Downloads 280
10984 Synthesis of Magnetic Chitosan Beads and Its Cross-Linked Derivatives for Sorption of Zinc Ions from Water Samples of Yamuna and Hindon Rivers in India

Authors: Priti Rani, Rajni Johar, P. S. Jassal

Abstract:

The magnetic chitosan beads (MCB) were synthesized using co-precipitation method and made to react with epichlorohydrin (ECH) to get the cross-linked derivative (ECH-MCB). The beads were characterized by FTIR, SEM, EDX, and TGA. It is found that zinc metal ion sorption efficiency of ECH-MCB is significantly higher than MCB. Various factors affecting the uptake behavior of metal ions, such as pH, adsorbent dosage, contact time, and temperature effects, were investigated. The adsorption parameters fitted well with Langmuir and Freundlich isotherms. The equilibrium parameter RL values support that the adsorption (0 < RL < 1) is favorable and spontaneous process. The thermodynamic parameters confirm that it is an endothermic reaction, which results in an increase in the randomness of adsorption process. The beads were regenerated using ethylene diamine tetraacetic acid (EDTA) for further use. These beads prove as promising materials for the removal of pollutants from industrial wastewater. Water samples from Yamuna and Hindon rivers were analysed for the detection of Zn (II) ions.

Keywords: chitosan magnetic beads, EDTA, epichlorohydrin, removal efficiency

Procedia PDF Downloads 143
10983 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings

Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev

Abstract:

Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.

Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy

Procedia PDF Downloads 262
10982 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 60
10981 Comparisons Growth Indices of Huso huso Prebroodstock Rearing Environments (Pond and Concrete Tank) for Production of Meat

Authors: Mohamad Ali Yazdani Sadati, Mir Hamed Sayed Hassani, Mahmoud Shakorian, Rezvanollah Kazemi, Bahareh Younes Haghighi

Abstract:

The efficiency of two rearing environments in culture and effect on growth performance of beluga (Huso huso) were investigated. In accordance two group of three years Huso huso ((Average weight of 9.93±0.305 and 10±0.5Kg) density (0.5 and 25 kg/m2)) with 3 replicate were stocked in two culture environment and reared with formulated diet including protein 43% and energy 22 MJ/ kg for 12 month from 2014.6.19 to 2015.9.10 A.D. In the end of rearing period, indices of Final weight, final biomass, daily growth and body percent weight fish reared in cement tank (20.1±0.6, 2016.66±5.77,0.112±0.00239 and 102.35±1.1kg) were significantly higher than fish reared in pond (17.4±0.4, 1746.66±7.2, 0.082±0.118 and 74.15±4.71 kg), respectively P < 0.05). Food efficiency ratio between two group was not significantly different (P > 0.05). The result of this study indicated that except of primary cost of building concrete tank, Huso huso prebroodstocking in cement tank is better than pond for result of increasing growth rate in culture rearing and more effective management.

Keywords: cement tank, earthen pond, Huso huso, prebroodstocking

Procedia PDF Downloads 315