Search results for: electroless nickel plating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 490

Search results for: electroless nickel plating

220 Operational Advantages of Tungsten Inert Gas over Metal Inert Gas Welding Process

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

In this research, studies were done on the material characterization of type 304 austenitic stainless steel weld produced by TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas) welding processes. This research is aimed to establish optimized process parameters that will result in a defect-free weld joint, homogenous distribution of the iron (Fe), chromium (Cr) and nickel (Ni) was observed at the welded joint of all the six samples. The welded sample produced at the current of 170 A by TIG welding process had the highest ultimate tensile strength (UTS) value of 621 MPa at the welds zone, and the welded sample produced by MIG process at the welding current of 150 A had the lowest UTS value of 568 MPa. However, it was established that TIG welding process is more appropriate for the welding of type 304 austenitic stainless steel compared to the MIG welding process.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 192
219 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform

Authors: F. Adjel, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism

Procedia PDF Downloads 524
218 Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy

Authors: K. Sahithya, I. Balasundar, Pritapant, T. Raghua

Abstract:

Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure.

Keywords: superalloys, dynamic material modeling, nickel alloys, dynamic recrystallization, superplasticity

Procedia PDF Downloads 121
217 Synergistic Extraction of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Methyl Isobutyl Cétone in Chloroform

Authors: F. Adjel, C. Bensmail, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of methyl isobutyl cétone (MIBK) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of MIBK, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm^-3 MIBK in chloroform. From a synergistic extraction-equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(MIBK). The MIBK-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and MIBK is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, MIBK, synergism

Procedia PDF Downloads 493
216 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran

Authors: Hossein Hassani, Ali Rezaei

Abstract:

Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.

Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution

Procedia PDF Downloads 290
215 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials

Authors: Mohamed Akbi, Aissa Bouchou

Abstract:

The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.

Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission

Procedia PDF Downloads 385
214 The Application of New Ligands including Different Atoms and Evaluation of Their Nucleophile Effects against Various Metals

Authors: Saman Hajmohamadi, Sohrab Hajmohamadi

Abstract:

The objectives of this experiment were to investigate the application of new ligands including different atoms and evaluation of their nucleophile effects against various metals. Chemistry researchers are really interested in this field. From among various ligands, there are some ligands with different coordinating ligands as well. There are great number of intermediate complexes and major elements of organic compositions with various atoms. There is a regular adding of new compositions. Complexes are the most important chemical combinations with various catalysts and biological, medicinal and other applications. Those complexes with ligands including different atom givers are really important and their synthesis could solve most of chemical problems. Supplying of new ligands is an important and key part of coordination chemistry which may cause some varieties and different properties in complexes with equal central nucleus. As a result, this research has evaluated new ligands including different coordination atoms, such as oxygen, nitrogen etc. along with their behavior against various metals like copper, nickel, iron etc.

Keywords: ligands, nucleophile, iron, cobalt, copper

Procedia PDF Downloads 203
213 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 70
212 Degradation of Rose Bengal by UV in the Presence of NiFe2O4 Nanoparticles

Authors: H. Boucheloukh, N. Aoun, S. Rouissa, T. Sehili, F. Parrino, V. Loddo

Abstract:

Photocatalysis has made a revolution in wastewater treatment and the elimination of persistent organic pollutants. This process is based on the use of semiconductors as photocatalysts. In this study, nickel ferrite spinel (NiFe2O4) nanoparticles were successfully synthesized by the sol-gel route. The structural, morphological, elemental composition, chemical state, particle size, optical and electrochemical characterizations using powder X-ray diffraction (P-XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy (EDAX ). We tested the prepared NiFe2O4(NPS)by monitoring the degradation of Rose Bengal (RB) dye in an aqueous solution under direct sunlight irradiation. The effects of catalyst dosage and dye concentration were also considered for the effective degradation of RB dye. The optimum catalyst dosage and concentration of dye were found to be 1 g/L and 10 μM, respectively. A maximum of 80% photocatalytic degradation efficiency (DE%) was achieved at 120 min of direct sunlight irradiation.

Keywords: Rose Bengal, Nickelate, photocatalysis, irradiation

Procedia PDF Downloads 213
211 Comparative Study in Treatment of Distal Humerus Fracture with Lateral Column Plate Percutaneous Medial Screw and Intercondylar Screw

Authors: Sameer Gupta, Prant Gupta

Abstract:

Context: Fractures in the distal humerus are complex and challenging injuries for orthopaedic surgeons that can be effectively treated with open reduction and internal fixation. Aims: The study analyses clinical outcomes in patients with intra-articular distal humerus fractures (AO type 13 C3 excluded) treated using a different method of fixation ( LCPMS). Subject and Methods: A study was performed, and the author's personal experiences were reported. Thirty patients were treated using an intercondylar screw with lateral column plating and percutaneous medial column screw fixation. Detailed analysis was done for functional outcomes (average arc of motion, union rate, and complications). Statistical Analysis Used: SPSS software version 22.0 was used for statistical analysis. Results: In our study, at the end of 6 months, Overall good to excellent results were achieved in 28 patients out of 30 after analysis on the basis of MEP score. The majority of patients regained full arc of motion, achieved fracture union without any major complications, and were able to perform almost all activities of daily living (which required good elbow joint movements and functions). Conclusion: We concluded that this novel method provides adequate stability and anatomical reconstruction with an early union rate observed at the end of 6 months. Excellent functional outcome was observed in almost all the patients because of less operating time and initiation of early physiotherapy, as most of the patients experienced mild nature of pain post-surgery.

Keywords: intra arricular distal humerus fracture, percutaneous medial screw, lateral column plate, arc of motion

Procedia PDF Downloads 60
210 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 237
209 Liquid Phase Sintering of Boron-Alloyed Powder Metallurgy Stainless Steel

Authors: Ming-Wei Wu, Zih-Jie Lin

Abstract:

Liquid phase sintering (LPS) is a feasible means for decreasing the porosity of powder metallurgy (PM) Fe-based material without substantially increase the production cost. The aim of this study was to investigate the effect of 0.6 wt% boron on the densification of PM 304L stainless steel by LPS. The results indicated that the increase in the sintered density of 304L+0.6B steel is obvious after 1250 ºC sintering, and eutectic structures with borides are observed at the interfaces of the raw steel powders. Differential scanning calorimetry (DSC) results show that liquid is generated at 1244ºC during sintering. The boride in the eutectic structure is rich in boron and chromium atoms and is deficient in nickel atoms, as identified by electron probe micro-analyzer (EPMA). Furthermore, the sintered densities of 304L and 304L+0.6B steels sintered at 1300 ºC are 6.99 g/cm3 and 7.69 g/cm3, respectively, indicating that boron is a suitable alloying element for facilitating LPS of PM 304L stainless steel.

Keywords: powder metallurgy, liquid phase sintering, stainless steel, boron, microstructure

Procedia PDF Downloads 336
208 Study the Effect of Sensitization on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints

Authors: Viranshu Kumar, Hitesh Arora, Pradeep Joshi

Abstract:

SS 304 is Austenitic stainless steel with Chromium and Nickel as basic constituents. It has excellent corrosion resistance properties and very good weldability. Austenitic stainless steels have superior mechanical properties at high temperatures and are used extensively in a range of applications. SS 304L has wide applications in various industries viz. Nuclear, Pharmaceutical, marine, chemical etc. due to its excellent applications and ease of joining this material has become very popular for fabrication as well as weld surfacing. Austenitic stainless steels have a tendency to form chromium depleted zones at the grain boundaries during welding and heat treatment, where chromium combines with available carbon in the vicinity of the grain boundaries, to produce an area depleted in chromium, and thus becomes susceptible to intergranular corrosion. This phenomenon is known as sensitization.

Keywords: sensitization, SS 304, GTAW, mechanical properties, carbideprecipitationHAZ, microstructure, micro hardness, tensile strength

Procedia PDF Downloads 398
207 X-Ray Photoelectron Spectroscopy Characterization of the Surface Layer on Inconel 625 after Exposition in Molten Salt

Authors: Marie Kudrnova, Jana Petru

Abstract:

This study is part of the international research - Materials for Molten Salt Reactors (MSR) and addresses the part of the project dealing with the corrosion behavior of candidate construction materials. Inconel 625 was characterized by x-ray photoelectron spectroscopy (XPS) before and after high–temperature experiment in molten salt. The experiment was performed in a horizontal tube furnace molten salt reactor, at 450 °C in argon, at atmospheric pressure, for 150 hours. Industrially produced HITEC salt was used (NaNO3, KNO3, NaNO2). The XPS study was carried out using the ESCAProbe P apparatus (Omicron Nanotechnology Ltd.) equipped with a monochromatic Al Kα (1486.6 eV) X-ray source. The surface layer on alloy 625 after exposure contains only Na, C, O, and Ni (as NiOx) and Nb (as NbOx BE 206.8 eV). Ni was detected in the metallic state (Ni0 – Ni 2p BE-852.7 eV, NiOx - Ni 2p BE-854.7 eV) after a short Ar sputtering because the oxide layer on the surface was very thin. Nickel oxides can form a protective layer in the molten salt, but only future long-term exposures can determine the suitability of Inconel 625 for MSR.

Keywords: Inconel 625, molten salt, oxide layer, XPS

Procedia PDF Downloads 141
206 High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill

Authors: Kazumasa Kawasaki, Katsuya Fukazawa

Abstract:

Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear.

Keywords: Inconel 625, ball end mill, carbide tool, high speed cutting, tool wear

Procedia PDF Downloads 212
205 Glyco-Conjugated Gold Nanorods Based Biosensor for Optical Detection and Photothermal Ablation of Food Borne Bacteria

Authors: Shimayali Kaushal, Nitesh Priyadarshi, Nitin Kumar Singhal

Abstract:

Food borne bacterial species have been identified as major pathogens in most of the severe pathogen-related diseases among humans which result in great loss to human health and food industry. Conventional methods like plating and enzyme-linked immune sorbent assay (ELISA) are time-consuming, laborious and require specialized instruments. Nanotechnology has emerged as a great field in case of rapid detection of pathogens in recent years. The AuNRs material has good electro-optical properties due to its larger light absorption band and scattering in surface plasmon resonance wavelength regions. By exploiting the sugar-based adhesion properties of microorganism, we can use the glycoconjugates capped gold nanorods as a potential nanobiosensor to detect the foodborne pathogen. In the present study, polyethylene glycol (PEG) coated gold nanorods (AuNRs) were prepared and functionalized with different types of carbohydrates and further characterized by UV-Visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM). The reactivity of above said nano-biosensor was probed by lectin binding assay and also by different strains of foodborne bacteria by using spectrophotometric and microscopic techniques. Due to the specific interaction of probe with foodborne bacteria (Escherichia coli, Pseudomonas aeruginosa), our nanoprobe has shown significant and selective ablation of targeted bacteria. Our findings suggest that our nanoprobe can be an ideal candidate for selective optical detection of food pathogens and can reduce loss to the food industry.

Keywords: glyco-conjugates, gold nanorods, nanobiosensor, nanoprobe

Procedia PDF Downloads 136
204 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 194
203 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 93
202 The Effect of Street Dust on Urban Environment

Authors: Turki M. Habeebullah, Abdel Hameed A. A. Awad, Said Munir, Atif M. F. Mohammed, Essam A. Morsy, Abdulaziz R. Seroji

Abstract:

Street dust has been knoweldged as an important source of air pollution. It does not remain deposited in a place for long, as it is easily resuspended back into the atmosphere. Street dust is a complex mixture derived from different sources: Deposited dust, traffic, tire, and brake wear, construction and demolition processes. The present study aims to evaluate the elementals ”iron, calcium, lead, cadmium, nickel, silicon, and selenium” and microbial “bacteria and fungi” contents associated street dust at the holy mosque areas. The street dust was collected by sweeping an arera~1m2 along the both sides of the road. The particles with diameter ≤ 1.7 µm constitued the highest percentages of the total particulate ≤45 µm. Moreover, The crustal species: iron and calcium were found in the highest concentrations, and proof that demolition and constricution were the main source of street dust. Also, the low biodiversity of microorganisms is attributed to severe weather conditions and characteristics of the arid environment.

Keywords: dust, microbial, environment, street

Procedia PDF Downloads 553
201 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: actuator, nozzle, microejector, piezoelectric

Procedia PDF Downloads 427
200 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 323
199 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 258
198 Establishment of Air Quality Zones in Italy

Authors: M. G. Dirodi, G. Gugliotta, C. Leonardi

Abstract:

The member states shall establish zones and agglomerations throughout their territory to assess and manage air quality in order to comply with European directives. In Italy decree 155/2010, transposing Directive 2008/50/EC on ambient air quality and cleaner air for Europe, merged into a single act the previous provisions on ambient air quality assessment and management, including those resulting from the implementation of Directive 2004/107/EC relating to arsenic, cadmium, nickel, mercury, and polycyclic aromatic hydrocarbons in ambient air. Decree 155/2010 introduced stricter rules for identifying zones on the basis of the characteristics of the territory in spite of considering pollution levels, as it was in the past. The implementation of such new criteria has reduced the great variability of the previous zoning, leading to a significant reduction of the total number of zones and to a complete and uniform ambient air quality assessment and management throughout the Country. The present document is related to the new zones definition in Italy according to Decree 155/2010. In particular, the paper contains the description and the analysis of the outcome of zoning and classification.

Keywords: zones, agglomerations, air quality assessment, classification

Procedia PDF Downloads 330
197 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 562
196 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
195 Impact on Vegetables Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Nida Rabab

Abstract:

The present study was conducted to assess the Impact on Vegetables Irrigated with Municipal and Industrial wastewater from Korangi Drain near IoBM, Karachi. Some vegetables are grown using sewage and industrial wastewater laden with alarmingly high levels of heavy metals and bacteriological contamination. Maximum concentration of lead was found in spinach 8.20 mg/l as against safe limits of 0.01 mg/l and maximum nickel concentration was found in banana 3.114 mg/l as against 0.02 mg/l, whereas all vegetables were invariably bacteriologically contaminated much beyond safe limits. Appropriate legislations in Sindh and competent manpower for rigorous monitoring to gage the harmful impact on vegetables grown with untreated municipal and industrial wastewater to effectively combat the problems of growing vegetables. The emptying of untreated municipal and industrial wastewater through Korangi Drain in fresh water bodies into Karachi cost should be banned to save the coast becoming hypoxic causing irreparable loss to marine life.

Keywords: laden, concentration, hypoxic, vegetables

Procedia PDF Downloads 300
194 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: micro-bubble, oxygenator, nozzle, piezoelectric

Procedia PDF Downloads 319
193 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 296
192 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy

Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar

Abstract:

We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.

Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide

Procedia PDF Downloads 115
191 Proximate and Amino Acid Composition of Amaranthus hybridus (Spinach), Celosia argentea (Cock's Comb) and Solanum nigrum (Black nightshade)

Authors: S. O. Oladeji, I. Saleh, A. U. Adamu, S. A. Fowotade

Abstract:

The proximate composition, trace metal level and amino acid composition of Amaranthus hybridus, Celosia argentea and Solanum nigrum were determined. These vegetables were high in their ash contents. Twelve elements were determined: calcium, chromium, copper, iron, lead, magnesium, nickel, phosphorous, potassium, sodium and zinc using flame photometer, atomic absorption and UV-Visible spectrophotometers. Calcium levels were highest ranged between 145.28±0.38 to 235.62±0.41mg/100g in all the samples followed by phosphorus. Quantitative chromatographic analysis of the vegetables hydrolysates revealed seventeen amino acids with concentration of leucine (6.51 to 6.66±0.21g/16gN) doubling that of isoleucine (2.99 to 3.33±0.21g/16gN) in all the samples while the limiting amino acids were cystine and methionine. The result showed that these vegetables were of high nutritive values and could be adequate used as supplement in diet.

Keywords: proximate, amino acids, Amaranthus hybridus, Celosia argentea, Solanum nigrum

Procedia PDF Downloads 400