World Academy of Science, Engineering and Technology
[Health and Medical Engineering]
Online ISSN : 1307-6892
318 Telehealth Ecosystem: Challenge and Opportunity
Authors: Rattakorn Poonsuph
Abstract:
Technological innovation plays a crucial role in virtual healthcare services. A growing number of telehealth platforms are concentrating on using digital tools to improve the quality and availability of care. As a result, telehealth represents an opportunity to redesign the way health services are delivered. The research objective is to discover a new business model for digital health services and related industries to participate with telehealth solutions. The business opportunity is valuable for healthcare investors as a startup company to further investigations or implement the telehealth platform. The paper presents a digital healthcare business model and business opportunities to related industries. These include digital healthcare services extending from a traditional business model and use cases of business opportunities to related industries. Although there are enormous business opportunities, telehealth is still challenging due to the patient adaption and digital transformation process within a healthcare organization.Keywords: telehealth, Internet hospital, HealthTech, InsurTech
Procedia PDF Downloads 168317 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals
Authors: Nelomi Anandagoda, Leanne J. Eveson
Abstract:
During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching
Procedia PDF Downloads 170316 Effectiveness of Mobile Health Augmented Cardiac Rehabilitation (MCard) on Health-Related Quality of Life among Post-Acute Coronary Syndrome Patients: A Randomized Controlled Trial
Authors: Aliya Hisam, Zia Ul Haq, Sohail Aziz, Patrick Doherty, Jill Pell
Abstract:
Objective: To determine the effectiveness of Mobile health augmented Cardiac rehabilitation (MCard) on health-related quality of life (HRQoL) among post-acute coronary syndrome(post-ACS) patients. Methodology: In a randomized controlled trial, post-ACS patients were randomly allocated (1:1) to an intervention group (received MCard; counseling, empowering with self-monitoring devices, short text messages, in addition to standard post-ACS care) or control group (standard post-ACS care). HRQoL was assessed by generic Short Form-12 and MacNew quality of life myocardial infarction (QLMI) tools. Participants were followed for 24 weeks with data collection and analysis at three-time points (baseline, 12 weeks and 24 weeks). Result: At baseline, 160 patients (80 in each group; mean age 52.66+8.46 years; 126 males, 78.75%) were recruited, of which 121(75.62%) continued and were analyzed at 12-weeks and 119(74.37%) at 24-weeks. The mean SF-12 physical component score significantly improved in the MCard group at 12 weeks follow-up (48.93 vs. control 43.87, p<.001) and 24 weeks (53.52 vs. 46.82 p<.001). The mean SF-12 mental component scores also improved significantly in the MCard group at 12 weeks follow-up (44.84 vs. control 41.40, p<.001) and 24 weeks follow-up (48.95 vs 40.12, p<.001). At 12-and 24-week follow-up, all domains of MacNew QLMI (social, emotional, physical and global) were also statistically significant (p<.001) improved in the MCard group, unlike the control group. Conclusion: MCard is feasible and effective at improving all domains of HRQoL. There was an improvement in physical, mental, social, emotional and global domains among the MCard group in comparison to the control group. The addition of MCard programs to post-ACS standard care may improve patient outcomes and reduce the burden on the health care setting.Keywords: acute coronary syndrome, mobile health augmented cardiac rehabilitation (MCard), cardiovascular diseases, cardiac rehabilitation, health-related quality of life, short form 12, MacNew QLMI
Procedia PDF Downloads 167315 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 259314 The Use and Safety of Leave from an Acute Inpatient Psychiatry Unit: A Retrospective Review of Pass Outcomes Over Four Years Abstract
Authors: Vasilis C. Hristidis, Ricardo Caceda, Ji Soo Kim, Brian Bronson, Emily A. Hill
Abstract:
Objective: Leave passes to provide authorized leave for hospitalized patients from a psychiatric inpatient unit. Though providing day passes was once a relatively common practice, there is relatively little data describing their safety and efficacy. Methods: This descriptive study examines the use of leave passes in an adult inpatient unit at a university hospital between 2017 and 2021, with attention to reasons for granting the day pass, duration, and outcome of the pass. Results: During the study period, ten patients with primary psychotic or mood disorders received 12 passes for either housing coordination, COVID-19 vaccination, or major family events. There were no fatalities or elopements. One patient experienced severe agitation and engaged in non-suicidal self-injurious behavior. A second patient showed mild, redirectable psychomotor agitation upon return to the unit. The remaining 10 passes were uneventful. Conclusions: Our findings support the view that patients with diverse diagnoses can safely be provided leave from an inpatient setting with adequate planning and support, yielding a low incidence of adverse events.Keywords: passes, inpatient, psychiatry, inpatient leave, outcome
Procedia PDF Downloads 199313 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 171312 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction
Authors: Priyadarsini Samal, Rajesh Singla
Abstract:
Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.Keywords: brain computer interface, electroencephalogram, regression model, stress, word search
Procedia PDF Downloads 187311 Risk Factors for Acute Respiratory Infection Among Children Under Five in Tanzania: A Systematic Review and Analysis of the 2015 Demographic and Health Survey for Tanzania
Authors: Ayesha Ali, Emilia Lindquist, Arif Jalal, Hannah Yusuf, Kayan Cheung, Rowan Eastabrook
Abstract:
It is currently estimated that over a third of deaths in children under five in Tanzania are caused by acute respiratory infections (ARIs). However, despite being one of the leading causes of morbidity and mortality across the developing world, its risk factors are poorly understood. Therefore, a systematic review of the literature published between 2015 and 2020 was conducted, focusing on risk factors for ARI in Tanzanian children under the age of five. 2015 Demographic and Health Survey (DHS) for Tanzania was analysed to supplement these findings with national data. 2224 papers were retrieved from two databases and were analysed by three independent reviewers. Thirteen papers were eligible for inclusion, covering a wide range of risk factors among which comorbidities (n=6), malnutrition (n=5), lack of parental education (n=4), poor socio-economic status (n=3), and delay in seeking healthcare (n=3) were the most cited risk factors. The risk factors with the highest reported risk ratios/odds ratios were lack of parental education (RR=11.5-14.5), followed by enrolment in school (RR=4.4), delay in seeking healthcare (RR=3.8) and cooking indoors (aOR =1.8-RR=5.5). The DHS data provided local context to these risk factors. For instance, the number of children experiencing symptoms of ARI in both urban and rural areas ranged between 4.5-5% in the two weeks prior to the survey. However, 79% of symptomatic children in Zanzibar received antibiotics for treatment compared to just 34% of those in the Southern Highlands. As demonstrated by both the systematic review and the DHS analysis, risk factors for ARI are predominantly socially determined, with Tanzania’s poorer rural children possessing the highest risk for ARI and more adverse health outcomes. Therefore, the burden of ARIs in Tanzanian children may be alleviated through the provision of appropriate treatment and parental education in rural areas.Keywords: acute respiratory infection, child, health education, morbidity, mortality, pneumonia, Tanzania
Procedia PDF Downloads 192310 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor
Abstract:
Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.Keywords: foot disorder, machine learning, neural network, pes planus
Procedia PDF Downloads 360309 Scoping Review of the Potential to Embed Mental Health Impact in Global Challenges Research
Authors: Netalie Shloim, Brian Brown, Siobhan Hugh-Jones, Jane Plastow, Diana Setiyawati, Anna Madill
Abstract:
In June 2021, the World Health Organization launched its guidance and technical packages on community mental health services, stressing a human rights-based approach to care. This initiative stems from an increasing acknowledgment of the role mental health plays in achieving the Sustainable Development Goals. Nevertheless, mental health remains a relatively neglected research area and the estimates for untreated mental disorders in low-and-middle-income countries (LMICs) are as high as 78% for adults. Moreover, the development sector and research programs too often side-line mental health as a privilege in the face of often immediate threats to life and livelihood. As a way of addressing this problem, this study aimed to examine past or ongoing GCRF projects to see if there were opportunities where mental health impact could have been achieved without compromising a study's main aim and without overburdening a project. Projects funded by the UKRI Global Challenges Research Fund (GCRF) were analyzed. This program was initiated in 2015 to support cutting-edge research that addresses the challenges faced by developing countries. By the end of May 2020, a total of 15,279 projects were funded of which only 3% had an explicit mental health focus. A sample of 36 non-mental-health-focused projects was then sampled for diversity across research council, challenge portfolio and world region. Each of these 36 projects was coded by two coders for opportunities to embed mental health impact. To facilitate coding, the literature was inspected for dimensions relevant to LMIC settings. Three main psychological and three main social dimensions were identified: promote a positive sense of self; promote positive emotions, safe expression and regulation of challenging emotions, coping strategies, and help-seeking; facilitate skills development; and facilitate community-building; preserve sociocultural identity; support community mobilization. Coding agreement was strong on missed opportunities for mental health impact on the three social dimensions: support community mobilization (92%), facilitate community building (83%), preserve socio-cultural identity (70%). Coding agreement was reasonably strong on missed opportunities for mental health impact on the three psychological dimensions: promote positive emotions (67%), facilitate skills development (61%), positive sense of self (58%). In order of frequency, the agreed perceived opportunities from the highest to lowest are: support community mobilization, facilitate community building, facilitate skills development, promote a positive sense of self, promote positive emotions, preserve sociocultural identity. All projects were considered to have an opportunity to support community mobilization and to facilitate skills development by at least one coder. Findings provided support that there were opportunities to embed mental health impact in research across the range of development sectors and identifies what kind of missed opportunities are most frequent. Hence, mainstreaming mental health has huge potential to tackle the lack of priority and funding it has attracted traditionally. The next steps are to understand the barriers to mainstreaming mental health and to work together to overcome them.Keywords: GCRF, mental health, psychosocial wellbeing, LMIC
Procedia PDF Downloads 174308 Parameters Influencing Human Machine Interaction in Hospitals
Authors: Hind Bouami
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making
Procedia PDF Downloads 181307 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 358306 Neonatal Mortality, Infant Mortality, and Under-five Mortality Rates in the Provinces of Zimbabwe: A Geostatistical and Spatial Analysis of Public Health Policy Provisions
Authors: Jevonte Abioye, Dylan Savary
Abstract:
The aim of this research is to present a disaggregated geostatistical analysis of the subnational provincial trends of child mortality variation in Zimbabwe from a child health policy perspective. Soon after gaining independence in 1980, the government embarked on efforts towards promoting equitable health care, namely through the provision of primary health care. Government intervention programmes brought hope and promise, but achieving equity in primary health care coverage was hindered by previous existing disparities in maternal health care disproportionately concentrated in urban settings to the detriment of rural communities. The article highlights policies and programs adopted by the government during the millennium development goals period between 1990-2015 as a response to the inequities that characterised the country’s maternal health care. A longitudinal comparative method for a spatial variation on child mortality rates across provinces is developed based on geostatistical analysis. Cross-sectional and time-series data was extracted from the World Health Organisation (WHO) global health observatory data repository, demographic health survey reports, and previous academic and technical publications. Results suggest that although health care policy was uniform across provinces, not all provinces received the same antenatal and perinatal services. Accordingly, provincial rates of child mortality growth between 1994 and 2015 varied significantly. Evidence on the trends of child mortality rates and maternal health policies in Zimbabwe can be valuable for public child health policy planning and public service delivery design both in Zimbabwe and across developing countries pursuing the sustainable development agenda.Keywords: antenatal care, perinatal care, infant mortality rate, neonatal mortality rate, under-five mortality rate, millennium development goals, sustainable development agenda
Procedia PDF Downloads 203305 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable
Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi
Abstract:
Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.Keywords: decision tree, demographic characteristics, foot disorders, machine learning
Procedia PDF Downloads 262304 The Impact of Economic Status on Health Status in the Context of Bangladesh
Authors: Md. S. Sabuz
Abstract:
Bangladesh, a South Asian developing country, has achieved a remarkable breakthrough in health indicators during the last four decades despite immense income inequality. This phenomenon results in the mystical exclusion of marginalized people from obtaining health care facilities. However, the persistence of exclusion of the disadvantaged remains troubling. Exclusion occurs from occupational inferiority, pay and wage differences, educational backwardness, gender disparity to urban-rural complexity and eliminate the unprivileged from seeking and availing the health services. Evidence from Bangladesh shows that many sick people prefer to die at home without securing medical services because in previous times they were not treated well, not because the medical facilities were inadequate or antediluvian but the socio-economic class allows them to receive obdurate treatment. Furthermore, government and policymakers have given enormous emphasis on infrastructural development and achieving health indicators instead of ensuring quality services and inclusiveness of people from all spheres. Therefore, it is high time to address the issues concerning this and highlight the impact of economic status on health status in a sociological perspective. The objective of this study is to consider ways of assessing and exploring the impact of economic status for instance: occupational status, pay and wage variable, on health status in the context of Bangladesh. The hypotheses are that there are a significant number of factors affecting economic status which are impactful for health status eventually, but acute income inequality is a prominent factor. Illiteracy, gender disparity, remoteness, incredibility on services, superior costs, superstition etc. are the dominant indicators behind the economic factors influencing the health status. The chosen methodologies are a qualitative and quantitative approaches to accomplish the research objectives. Secondary sources of data will be used to conduct the study. Surveys will be conducted on the people who have ever been through the health care facilities and people from the different socio-economic and cultural backgrounds. Focus group discussions will be conducted to acquire the data from different cultural and regional citizens. The findings show that 48% of people who are from disadvantaged communities have been deprived of proper health care facilities. The general reasons behind this are the higher cost of medicines and other equipment. A significant number of people are unaware of the appropriate facilities. It was found that the socio-economic variables are the main influential factors that work as the driving force for both economic dimension and health status. Above all regional variables and gender, dimensions have an enormous effect on determining the health status of an individual or community. Amidst many positive achievements for example decrease in the child mortality rate, an increase in the immunization programs of the child etc., the inclusiveness of all classes of people in health care facilities has been overshadowed in Bangladesh. However, this phenomenon along with the socio-economic and cultural phenomena significantly demolishes the quality and inclusiveness of the health status of people.Keywords: cultural context of health, economic status, gender and health, rural health care
Procedia PDF Downloads 212303 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic
Authors: May M. Youssef
Abstract:
This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing
Procedia PDF Downloads 201302 Topic Sentiments toward the COVID-19 Vaccine on Twitter
Authors: Melissa Vang, Raheyma Khan, Haihua Chen
Abstract:
The coronavirus disease 2019 (COVID‐19) pandemic has changed people's lives from all over the world. More people have turned to Twitter to engage online and discuss the COVID-19 vaccine. This study aims to present a text mining approach to identify people's attitudes towards the COVID-19 vaccine on Twitter. To achieve this purpose, we collected 54,268 COVID-19 vaccine tweets from September 01, 2020, to November 01, 2020, then the BERT model is used for the sentiment and topic analysis. The results show that people had more negative than positive attitudes about the vaccine, and countries with an increasing number of confirmed cases had a higher percentage of negative attitudes. Additionally, the topics discussed in positive and negative tweets are different. The tweet datasets can be helpful to information professionals to inform the public about vaccine-related informational resources. Our findings may have implications for understanding people's cognitions and feelings about the vaccine.Keywords: BERT, COVID-19 vaccine, sentiment analysis, topic modeling
Procedia PDF Downloads 150301 Effectiveness of Office-Based Occupational Therapy for Office Workers with Low Back Pain: A Public Health Approach
Authors: Dina Jalalvand, Joshua A. Cleland
Abstract:
This double-blind, randomized control trial with parallel groups aimed to examine the effectiveness of office-based occupational therapy for office workers with low back pain on the intensity of pain and range of motion. Seventy-two male office workers (age: 20-50 years) with chronic low back pain (more than three months with at least two symptoms of chronic low back pain) satisfied eligibility criteria and agreed to participate in this study. The absence of joint burst following magnetic resonance imagining (MRI) was considered as an important inclusion criterion as well. Subjects were randomly assigned to a control or experimental group. The experimental group received the modified package of exercise-based occupational therapy, which included 11 simple exercise movements (derived from Williams and McKenzie), and the control group just received the conventional therapy, which included their routine physiotherapy sessions. The subjects completed the exercises three times a week for a duration of six weeks. Each exercise session was 10-15 minutes. Pain intensity and range of motion were the primary outcomes and were measured at baseline, 6 weeks, and 12 weeks after the end of the intervention using the numerical rating scale (NRS) and goniometer accordingly. Repeated measure ANOVA was used for analyzing data. The results of this study showed that significant decreases in pain intensity (p ≤ 0.05) and an increase in range of motion (p ≤ 0.001) in the experimental group in comparison with the control group after 6 and 12 weeks of intervention (between-group comparisons). In addition, there was a significant decrease in intensity of the pain (p ≤ 0.05) and an increase (p ≤ 0.001) in range of motion in the intervention group in comparison with baseline after 6 and 12 weeks (within-group comparison). This showed a positive effect of exercise-based occupational therapy that could potentially be used with low cost among office workers who suffer from low back pain. In addition, it should be noted that the introduced package of exercise training is easy to do, and there is not a need for a specific introduction.Keywords: public health, office workers, low back pain, occupational therapy
Procedia PDF Downloads 218300 The Provision of a Safe Face-to-Face Teaching Program for Final Year Medical Students during the COVID-19 Pandemic
Authors: Rachel Byrne
Abstract:
Background: Due to patient and student safety concerns, combined with clinical teachers being redeployed to clinical practice, COVID-19 has resulted in a reduction in face-to-face teaching sessions for medical students. Traditionally such sessions are particularly important for final year medical students, especially in preparing for their final practical exams. A reduced student presence on the wards has also resulted in fewer opportunities for junior doctors to provide teaching sessions. This has implications for junior doctors achieving their own curriculum outcomes for teaching, as well as potentially hindering the development of a future interest in medical education. Aims: The aims of the study are 1) To create a safe face-to-face teaching environment during COVID-19 which focussed on exam preparation for final year medical students, 2) To provide a platform for doctors to gain teaching experience, 3 ) to enable doctors to gain feedback or assessments on their teaching, 4) To create beginners guide to designing a new teaching program for future junior doctors. Methods: We created a program of timed clinical stations consisting of four sessions every five weeks during the student’s medicine attachment. Each session could be attended by 6 students and consisted of 6 stations ran by junior doctors, with each station following social distancing and personal protective equipment requirements. Junior doctors were asked to design their own stations. The sessions ran out-of-hours on weekday evenings and were optional for the students. Results: 95/95 students and 20/40 doctors involved in the programme completed feedback. 100% (n=95) of students strongly agreed/agreed that sessions were aimed at an appropriate level and provided constructive feedback. 100% (n=95) of students stated they felt more confident in their abilities and would recommend the session to peers. 90% (n=18) of the teachers strongly agreed/agreed that they felt more confident in their teaching abilities and that the sessions had improved their own medical knowledge. 85% (n=17) of doctors had a teaching assessment completed, and 83% (n=16) said the program had made them consider a career in medical education. The difficulties of creating such a program were highlighted throughout, and a beginner’s guide was created with the hopes of helping future doctors who are interested in teaching address the common obstacles.Keywords: COVID-19, education, safety, medical
Procedia PDF Downloads 192299 Exploring the Association between Race and Attitudes toward Physician-Assisted Death; An Analysis of the Gss Dataset
Authors: Seini G. Kaufusi
Abstract:
Background. Physician-assisted death (PAD) has and continues to be a controversial issue in the U.S. Dying with dignity statutes exists in 9 U.S. jurisdictions that permit competent adults diagnosed with a terminal illness and given a prognosis of 6 month or less to live to request medication to hasten death. Robust advocacy for and against PAD influences policy, and opinions vary. Aim. This study aims to explore the association between race and the attitudes toward physician-assisted death in the U.S. Methods. Data for this study derives from the General Social Survey (GSS) dataset, a national survey conducted by the National Opinion Research Center (NORC) that focuses on the opinions and values of American’s. A cross-sectional design and probability sample from the 2018 data set was used to randomly select respondents. Results. The results indicated that race is significantly associated with attitudes towards physician-assisted death. The level of significance suggests a strong positive association, and the direction indicated that Black and Other racial groups have higher rates of positive decision about PAD. Conclusion. Although attitudes towards PAD varied, Black and other racial groups had favorable decisions for PAD. Further research is crucial in the continuous debate on PAD and understanding the influences of predictors for or against PAD.Keywords: attitudes, euthanasia, physician-assisted death, race
Procedia PDF Downloads 162298 Pre-Analytical Laboratory Performance Evaluation Utilizing Quality Indicators between Private and Government-Owned Hospitals Affiliated to University of Santo Tomas
Authors: A. J. Francisco, K. C. Gallosa, R. J. Gasacao, J. R. Ros, B. J. Viado
Abstract:
The study focuses on the use of quality indicators (QI)s based on the standards made by the (IFCC), that could effectively identify and minimize errors occurring throughout the total testing process (TTP), in order to improve patient safety. The study was conducted through a survey questionnaire that was given to a random sample of 19 respondents (eight privately-owned and eleven government-owned hospitals), mainly CMTs, MTs, and Supervisors from UST-affiliated hospitals. The pre-analytical laboratory errors, which include misidentification errors, transcription errors, sample collection errors and sample handling and transportation errors, were considered as variables according to the IFCC WG-LEPS. Data gathered were analyzed using the Mann-Whitney U test, Percentile, Linear Regression, Percentage, and Frequency. The laboratory performance of both hospitals is High level. There is no significant difference between the laboratory performance between the two stated variables. Moreover, among the four QIs, sample handling and transportation errors contributed most to the difference between the two variables. Outcomes indicate satisfactory performance between both variables. However, in order to ensure high-quality and efficient laboratory operation, constant vigilance and improvements in pre-analytical QI are still needed. Expanding the coverage of the study, the inclusion of other phases, utilization of parametric tests are recommended.Keywords: pre-analytical phase, quality indicators, laboratory performance, pre-analytical error
Procedia PDF Downloads 146297 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 132296 The Lived Experiences of Paramedical Students Engaged in Virtual Hands-on Learning
Authors: Zyra Cheska Hidalgo, Joehiza Mae Renon, Kzarina Buen, Girlie Mitrado
Abstract:
ABSTRACT: The global coronavirus disease (COVID-19) has dramatically impacted the lives of many, including education and our economy. Thus, it presents a massive challenge for medical education as instructors are mandated to deliver their lectures virtually to ensure the continuity of the medical education process and ensure students' safety. The purpose of this research paper is to determine the lived experiences of paramedical students who are engaged in virtual hands-on learning and to determine the different coping strategies they used to deal with virtual hands-on learning. The researchers used the survey method of descriptive research design to determine the lived experiences and coping strategies of twenty (20) paramedical students from Lorma Colleges (particularly the College of Medicine Department). The data were collected through online questionnaires, particularly with the use of google forms. This study shows technical issues, difficulty in adapting styles, distractions and time management issues, mental and physical health issues, and lack of interest and motivation are the most common problems and challenges experienced by paramedical students. On the other hand, the coping strategies used by paramedical students to deal with those challenges include time management, engagement in leisure activities, acceptance of responsibilities, studying, and adapting. With the data gathered, the researchers concluded that virtual hands-on learning effectively increases the knowledge of paramedical students. However, teaching and learning barriers must have to be considered to implement virtual hands-on learning successfully.Keywords: virtual hands-on learning, E-learning, paramedical students, medical education
Procedia PDF Downloads 131295 Cirrhosis Mortality Prediction as Classification using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and novel data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. To the best of our knowledge, this is the first work to apply modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia PDF Downloads 134294 Health Advocacy in Medical School: An American Survey on Attitudes and Engagement in Clerkships
Authors: Rachel S. Chang, Samuel P. Massion, Alan Z. Grusky, Heather A. Ridinger
Abstract:
Introduction Health advocacy is defined as activities that improve access to care, utilize resources, address health disparities, and influence health policy. Advocacy is increasingly being recognized as a critical component of a physician’s role, as understanding social determinants of health and improving patient care are important aspects within the American Medical Association’s Health Systems Science framework. However, despite this growing prominence, educational interventions that address advocacy topics are limited and variable across medical school curricula. Furthermore, few recent studies have evaluated attitudes toward health advocacy among physicians-in-training in the United States. This study examines medical student attitudes towards health advocacy, along with perceived knowledge, ability, and current level of engagement with health advocacy during their clerkships. Methods This study employed a cross-sectional survey design using a single anonymous, self-report questionnaire to all second-year medical students at Vanderbilt University School of Medicine (n=96) in December 2020 during clerkship rotations. The survey had 27 items with 5-point Likert scale (15), multiple choice (11), and free response questions (1). Descriptive statistics and thematic analysis were utilized to analyze responses. The study was approved by the Vanderbilt University Institutional Review Board. Results There was an 88% response rate among second-year clerkship medical students. A majority (83%) agreed that formal training in health advocacy should be a mandatory part of the medical student curriculum Likewise, 83% of respondents felt that acting as a health advocate or patients should be part of their role as a clerkship student. However, a minority (25%) felt adequately prepared. While 72% of respondents felt able to identify a psychosocial need, 18% felt confident navigating the healthcare system and only 9% felt able to connect a patient to a psychosocial resource to fill that gap. 44% of respondents regularly contributed to conversations with their medical teams when discussing patients’ social needs, such as housing insecurity, financial insecurity, or legal needs. On average, respondents reported successfully connecting patients to psychosocial resources 1-2 times per 8-week clerkship block. Barriers to participating in health advocacy included perceived time constraints, lack of awareness of resources, lower emphasis among medical teams, and scarce involvement with social work teams. Conclusions In this single-institutional study, second-year medical students on clerkships recognize the importance of advocating for patients and support advocacy training within their medical school curriculum. However, their perceived lack of ability to navigate the healthcare system and connect patients to psychosocial resources, result in students feeling unprepared to advocate as effectively as they hoped during their clerkship rotations. Our results support the ongoing need to equip medical students with training and resources necessary for them to effectively act as advocates for patients.Keywords: clerkships, medical students, patient advocacy, social medicine
Procedia PDF Downloads 130293 The Use of Simulation-Based Training to Improve Team Dynamics during Code in Critical Care Units
Authors: Akram Rasheed
Abstract:
Background: Simulation in the health care field has been increasingly used over the last years in the training of resuscitation and life support practices. It has shown the advantage of improving the decision-making and technical skills through deliberate practice and return demonstration. Local Problem: This article reports on the integration of simulation-based training (SBT) in the training program about proper team dynamics and leadership skills during cardiopulmonary resuscitation (CPR) in the intensive care unit (ICU). Method and Intervention: Training of 180 critical care nurses was conducted using SBT between 1st January and 30th 2020. We had conducted 15 workshops, with the integration of SBT using high fidelity manikins and using demonstration and return-demonstration approach to train the nursing staff about proper team dynamics and leadership skills during CPR. Results: After completing the SBT session, all 180 nurses completed the evaluation form. The majority of evaluation items were rated over 95% for the effectiveness of the education; four items were less than 95% (88–94%). Lower rated items considered training and practice time, improved competency, and commitment to apply to learn. The team dynamics SBT was evaluated as an effective means to improve team dynamics and leadership skills during CPR in the intensive care unit (ICU). Conclusion: The use of simulation-based training to improve team dynamics and leadership skills is an effective method for better patient management during CPR. Besides skills competency, closed-loop communication, clear messages, clear roles, and assignments, knowing one’s limitations, knowledge sharing, constructive interventions, re-evaluating and summarizing, and mutual respect are all important concepts that should be considered during team dynamics training. However, participants reported the need for a repeated practice opportunity to build competency.Keywords: cardiopulmonary resuscitation, high fidelity manikins, simulation-based training, team dynamics
Procedia PDF Downloads 142292 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 254291 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning
Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj
Abstract:
Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net
Procedia PDF Downloads 155290 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017
Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly
Abstract:
Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)
Procedia PDF Downloads 170289 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study
Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski
Abstract:
Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model
Procedia PDF Downloads 149