Search results for: volume fraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33326

Search results for: volume fraction

33326 The Influence of Fiber Volume Fraction on Thermal Conductivity of Pultruded Profile

Authors: V. Lukášová, P. Peukert, V. Votrubec

Abstract:

Thermal conductivity in the x, y and z-directions was measured on a pultruded profile that was manufactured by the technology of pulling from glass fibers and a polyester matrix. The results of measurements of thermal conductivity showed considerable variability in different directions. The caused variability in thermal conductivity was expected due fraction variations. The cross-section of the pultruded profile was scanned. An image analysis illustrated an uneven distribution of the fibers and the matrix in the cross-section. The distribution of these inequalities was processed into a Voronoi diagram in the observed area of the pultruded profile cross-section. In order to verify whether the variation of the fiber volume fraction in the pultruded profile can affect its thermal conductivity, the numerical simulations in the ANSYS Fluent were performed. The simulation was based on the geometry reconstructed from image analysis. The aim is to quantify thermal conductivity numerically. Above all, images with different volume fractions were chosen. The results of the measured thermal conductivity were compared with the calculated thermal conductivity. The evaluated data proved a strong correlation between volume fraction and thermal conductivity of the pultruded profile. Based on presented results, a modification of production technology may be proposed.

Keywords: Numerical simulation, pultruded profile, volume fraction, thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
33325 Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems

Authors: Shengfeng Li, Rujing Wang

Abstract:

In this paper, we present two new one-step iterative methods based on Thiele-s continued fraction for solving nonlinear equations. By applying the truncated Thiele-s continued fraction twice, the iterative methods are obtained respectively. Analysis of convergence shows that the new methods are fourth-order convergent. Numerical tests verifying the theory are given and based on the methods, two new one-step iterations are developed.

Keywords: Iterative method, Fixed-point iteration, Thiele's continued fraction, Order of convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
33324 Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion

Authors: Arash Karimipour, M. Afrand, M. M. Bazofti

Abstract:

The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.

Keywords: Nanofluid, Top lid oscillation, Mixed convection, Volume fraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
33323 Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures

Authors: Z. Al-Qodah, M. Al-Busoul, A. Khraewish

Abstract:

The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.

Keywords: Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
33322 Replacing Fibre Reinforced Concrete with Bitumen Asphalt in Airports

Authors: Y. Mohammadi, H. M. Ghasemzadeh, T. B. Talari, M. A. Ghorbani

Abstract:

Concrete pavement has superior durability and longer structural life than asphalt pavement. Concrete pavement requires less maintenance compared to asphalt pavement which requires maintenance and major rehabilitation. Use of the concrete pavement has been grown over the past decade in developing countries. Fibre reinforced concrete (FRC) has been successfully used in design of concrete pavement in past decade. In this research, the effect of fibre volume fraction in modulus of rupture, load-deflection, equivalent flexural strength (fe,3) and the equivalent flexural strength ratio (Re,3) has been used in different fibre volume fraction. Crimped-type flat steel fibre of size 50 x 2.0 x 0.6 mm was used with 1.0%, 1.5% and 2.0% volume fraction. Beam specimens of size 500 x 100 x 100 mm were used for flexural as well as with JCI method for analysis flexural toughness, equivalent flexural strength. It was obtained as the 2% fibre volume fractions; reduce 45% of the concrete pavement thickness.

Keywords: Concrete pavement, Equivalent flexural strength, Fibre, Load-deflection curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
33321 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids

Authors: S. Etaig, R. Hasan, N. Perera

Abstract:

This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.

Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
33320 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20o to +20o using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: Flow patterns, inclined two phase flow, pressure drop, void fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4608
33319 System Reduction Using Modified Pole Clustering and Modified Cauer Continued Fraction

Authors: Jay Singh, C. B. Vishwakarma, Kalyan Chatterjee

Abstract:

A mixed method by combining modified pole clustering technique and modified cauer continued fraction is proposed for reducing the order of the large-scale dynamic systems. The denominator polynomial of the reduced order model is obtained by using modified pole clustering technique while the coefficients of the numerator are obtained by modified cauer continued fraction. This method generated 'k' number of reduced order models for kth order reduction. The superiority of the proposed method has been elaborated through numerical example taken from the literature and compared with few existing order reduction methods.

Keywords: Modified Pole Clustering, Modified Cauer Continued Fraction, Order Reduction, Stability, Transfer Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
33318 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell

Authors: M. Hossain, H. P. Zhu, A. B. Yu

Abstract:

This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.

Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
33317 Effect of Volume Fraction of Fibre on the Mechanical Properties of Nanoclay Reinforced E-Glass-Epoxy Composites

Authors: K. Krushnamurty, D. Rasmitha, I. Srikanth, K. Ramji, Ch. Subrahmanyam

Abstract:

E-glass-epoxy laminated composites having different fiber volume fractions (40, 50, 60 and 70) were fabricated with and without the addition of nanoclay. Flexural strength and tensile strength of the composite laminates were determined. It was observed that, with increasing the fiber volume fraction (Vf) of fiber from 40 to 60, the ability of nanoclay to enhance the tensile and flexural strength of E-glass-epoxy composites decreases significantly. At 70Vf, the tensile and flexural strength of the nanoclay reinforced E-glass-epoxy were found to be lowest when compared to the E-glass-epoxy composite made without the addition of nanoclay. Based on the obtained data and microstructure of the tested samples, plausible mechanism for the observed trends has been proposed. The enhanced mechanical properties for nanoclay reinforced E-glass-epoxy composites for 40-60 Vf, due to higher interface toughness coupled with strong interfilament bonding may have ensured the homogeneous load distribution across all the glass fibers. Results in the decrease in mechanical properties at 70Vf, may be due to the inability of the matrix to bind the nanoclay and glass-fibers.

Keywords: E-glass-epoxy composite laminates, fiber volume fraction, e-glass fiber, mechanical properties, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
33316 Chemical Leaching of Metals from Landfill’s Fine Fraction

Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas

Abstract:

Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.

Keywords: Landfills, fine fraction, leached metals, leaching kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
33315 Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials

Authors: Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu

Abstract:

Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results showthat3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.

Keywords: Digital image correlation, VARTM, FRP, fiber volume fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
33314 Damage Strain Analysis of Parallel Fiber Eutectic

Authors: Jian Zheng, Xinhua Ni, Xiequan Liu

Abstract:

According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree.

Keywords: Parallel fiber eutectic, no-damage strain, damage strain, fiber volume fraction, damage degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
33313 Effect of Shear Theories on Free Vibration of Functionally Graded Plates

Authors: M. Karami Khorramabadi, M. M. Najafizadeh, J. Alibabaei Shahraki, P. Khazaeinejad

Abstract:

Analytical solution of the first-order and third-order shear deformation theories are developed to study the free vibration behavior of simply supported functionally graded plates. The material properties of plate are assumed to be graded in the thickness direction as a power law distribution of volume fraction of the constituents. The governing equations of functionally graded plates are established by applying the Hamilton's principle and are solved by using the Navier solution method. The influence of side-tothickness ratio and constituent of volume fraction on the natural frequencies are studied. The results are validated with the known data in the literature.

Keywords: Free vibration, Functionally graded plate, Naviersolution method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
33312 Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell

Authors: M.Hosseinjani Zamenjani, A.R.Tahmasebi Birgani, M.R.Isvandzibaei

Abstract:

Vibration of thin cylindrical shells made of a functionally gradient material composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its outer surface and stainless steel on its inner surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Keywords: Nickel, Stainless Steel, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
33311 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow

Authors: Perumal Kumar, Rajamohan Ganesan

Abstract:

Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896
33310 Bose-Einstein Condensation in Neutral Many Bosonic System

Authors: M. Al-Sugheir, M. Sakhreya, G. Alna'washi, F. Al-Dweri

Abstract:

In this work, the condensation fraction and transition temperature of neutral many bosonic system are studied within the static fluctuation approximation (SFA). The effect of the potential parameters such as the strength and range on the condensate fraction was investigated. A model potential consisting of a repulsive step potential and an attractive potential well was used. As the potential strength or the core radius of the repulsive part increases, the condensation fraction is found to be decreased at the same temperature. Also, as the potential depth or the range of the attractive part increases, the condensation fraction is found to be increased. The transition temperature is decreased as the potential strength or the core radius of the repulsive part increases, and it increases as the potential depth or the range of the attractive part increases.

Keywords: About four key words or phrases in alphabetical order, separated by commas

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
33309 Radiobiological Model in Radiotherapy Planning for Prostate Cancer Treatment

Authors: Pradip Deb

Abstract:

Quantitative radiobiological models can be used to assess the optimum clinical outcome from sophisticated therapeutic modalities by calculating tumor control probability (TCP) and normal tissue complication probability (NTCP). In this study two 3D-CRT and an IMRT treatment plans were developed with an initial prescription dose of 60 Gy in 2 Gy/fraction to prostate. Sensitivity of TCP and Complication free tumor control probability (P+) to the different values of α/β ratio was investigated for various prescription doses planned to be delivered in either a fixed number of fractions (I) or in a fixed dose per fraction (II) in each of the three different treatment plans. High dose/fraction and high α/β value result in comparatively smaller P+ and IMRT plans resulted in the highest P+, mainly due to the decrease in NTCP. If α/β is lower than expected, better tumor control can be achieved by increasing dose/fraction but decreasing the number of fractions.

Keywords: Linear Quadratic Model, TCP, NTCP, α/β ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
33308 Turbulent Forced Convection Flow in a Channel over Periodic Grooves Using Nanofluids

Authors: Farshid Fathinia, Mohammad Parsazadeh, Amirhossein Heshmati

Abstract:

Turbulent forced convection flow in a 2-dimensional channel over periodic grooves is numerically investigated. Finite volume method is used to study the effect of turbulence model. The range of Reynolds number varied from 10000 to 30000 for the ribheight to channel-height ratio (B/H) of 2. The downstream wall is heated by a uniform heat flux while the upstream wall is insulated. The investigation is analyzed with different types of nanoparticles such as SiO2, Al2O3, and ZnO, with water as a base fluid are used. The volume fraction is varied from 1% to 4% and the nanoparticle diameter is utilized between 20nm to 50nm. The results revealed 114% heat transfer enhancement compared to the water in a grooved channel by using SiO2 nanoparticle with volume fraction and nanoparticle diameter of 4% and 20nm respectively.

Keywords: Forced convection, Periodic grooves, Nanofluids, Turbulent model, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
33307 Minimum Fluidization Velocities of Binary-Solid Mixtures: Model Comparison

Authors: Mohammad Asif

Abstract:

An accurate prediction of the minimum fluidization velocity is a crucial hydrodynamic aspect of the design of fluidized bed reactors. Common approaches for the prediction of the minimum fluidization velocities of binary-solid fluidized beds are first discussed here. The data of our own careful experimental investigation involving a binary-solid pair fluidized with water is presented. The effect of the relative composition of the two solid species comprising the fluidized bed on the bed void fraction at the incipient fluidization condition is reported and its influence on the minimum fluidization velocity is discussed. In this connection, the capability of packing models to predict the bed void fraction is also examined.

Keywords: Bed void fraction, Binary solid mixture, Minimumfluidization velocity, Packing models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
33306 Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Authors: Kyung-Su Na, Ji-Hwan Kim

Abstract:

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.

Keywords: Functionally graded materials, Stress analysis, 3-D finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
33305 A Numerical Study of the Effect of Side-Dump Angle on Fuel Droplets Sizing in a Three- Dimensional Side-Dump Combustor

Authors: M. Mojtahedpoor, M. M. Doustdar

Abstract:

A numerical study on the effect of side-dump angle on fuel droplets sizing and effective mass fraction have been investigated in present paper. The mass of fuel vapor inside the flammability limit is named as the effective mass fraction. In the first step we have considered a side-dump combustor with dump angle of 0o (acrossthe cylinder) and by increasing the entrance airflow velocity from 20 to 30, 40 and 50 (m/s) respectively, the mean diameter of fuel droplets sizing and effective mass fraction have been studied. After this step, we have changed the dump angle from 0o to 30o,45o and finally 60o in direction of cylinderand also we have increased the entrance airflow velocity from 20 up to 50 (m/s) with the amount of growth of 10(m/s) in each step, to examine its effects on fuel droplets sizing as well as effective mass fraction. With rise of entrance airflow velocity, these calculations are repeated in each step too. The results show, with growth of dump-angle the effective mass fraction has been decreased and the mean diameter of droplets sizing has been increased. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multicomponent code for the analysis of chemically reacting flows with sprays, is used.

Keywords: Side-Dump combustor, Droplets sizing, Side-Dump angle, KIVA-3V

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
33304 A Novel Approach for Beneficiation and Dewatering of Coal Fines for Indian Coal Preparation Plant

Authors: K.K. Sharma, K.M.K. Sinha, T.G. Charan, D.D. Haldar

Abstract:

An attempt has been made to beneficiate the Indian coking coal fines by a combination of Spiral, flotation and Oleo Flotation processes. Beneficiation studies were also carried out on - 0.5mm coal fines using flotation and oleo flotation by splitting at size 0.063mm.Size fraction of 0.5mm-0.063mm and -0.063mm size were treated in flotation and Oleo flotation respectively. The washability studies on the fraction 3-0.5 mm indicated that good separation may be achieved when it is fed in a spiral. Combined product of Spiral, Flotation and Oleo Flotation has given a significant yield at acceptable ash%. Studies were also conducted to see the dewatering of combined product by batch type centrifuge. It may further be suggested that combination of different processes may be used to treat the -3 mm fraction in an integrated manner to achieve the yield at the desired ash level. The treatment of the 3/1 mm -0.5 mm size fraction by spiral,-0.5-0.63 mm by conventional froth flotation and - 0.063 fractions by oleo flotation may provide a complete solution of beneficiation and dewatering of coal fines, and can effectively address the environmental problems caused by coal fines.

Keywords: coal fines, dewatering, environment, flotation, oleoflotation, spiral

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
33303 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator

Authors: M. M. Doustdar, M. Mojtahedpoor

Abstract:

The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.

Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
33302 Transient Analysis of Central Region Void Fraction in a 3x3 Rod Bundle under Bubbly and Cap/Slug Flows

Authors: Ya-Chi Yu, Pei-Syuan Ruan, Shao-Wen Chen, Yu-Hsien Chang, Jin-Der Lee, Jong-Rong Wang, Chunkuan Shih

Abstract:

This study analyzed the transient signals of central region void fraction of air-water two-phase flow in a 3x3 rod bundle. Experimental tests were carried out utilizing a vertical rod bundle test section along with a set of air-water supply/flow control system, and the transient signals of the central region void fraction were collected through the electrical conductivity sensors as well as visualized via high speed photography. By converting the electric signals, transient void fraction can be obtained through the voltage ratios. With a fixed superficial water velocity (Jf=0.094 m/s), two different superficial air velocities (Jg=0.094 m/s and 0.236 m/s) were tested and presented, which were corresponding to the flow conditions of bubbly flows and cap/slug flows, respectively. The time averaged central region void fraction was obtained as 0.109-0.122 with 0.028 standard deviation for the selected bubbly flow and 0.188-0.221with 0.101 standard deviation for the selected cap/slug flow, respectively. Through Fast Fourier Transform (FFT) analysis, no clear frequency peak was found in bubbly flow, while two dominant frequencies were identified around 1.6 Hz and 2.5 Hz in the present cap/slug flow.

Keywords: Central region, rod bundles, transient void fraction, two-phase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
33301 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring, which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: Cardiac MRI, Graph searching, Left ventricle segmentation, K-means clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
33300 The Incorporation of In in GaAsN as a Means of N Fraction Calibration

Authors: H. Hashim, B. F. Usher

Abstract:

InGaAsN and GaAsN epitaxial layers with similar nitrogen compositions in a sample were successfully grown on a GaAs (001) substrate by solid source molecular beam epitaxy. An electron cyclotron resonance nitrogen plasma source has been used to generate atomic nitrogen during the growth of the nitride layers. The indium composition changed from sample to sample to give compressive and tensile strained InGaAsN layers. Layer characteristics have been assessed by high-resolution x-ray diffraction to determine the relationship between the lattice constant of the GaAs1-yNy layer and the fraction x of In. The objective was to determine the In fraction x in an InxGa1-xAs1-yNy epitaxial layer which exactly cancels the strain present in a GaAs1-yNy epitaxial layer with the same nitrogen content when grown on a GaAs substrate.

Keywords: Indium, molecular beam epitaxy, nitrogen, straincancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
33299 An Investigation on the Effects of Injection Spray Cone on Propulsive Droplets in a Duct

Authors: M. Mojtahedpoor

Abstract:

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Keywords: Ramjet, droplet sizing, injection velocity, air flowvelocity, efficient mass fraction..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
33298 Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct

Authors: M. M. Doustdar , M. Mojtahedpoor

Abstract:

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Keywords: Ramjet, droplet sizing, injection velocity, air flow velocity, efficient mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
33297 Structural Characteristics of Three-Dimensional Random Packing of Aggregates with Wide Size Distribution

Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar

Abstract:

The mechanical properties of granular solids are dependent on the flow of stresses from one particle to another through inter-particle contact. Although some experimental methods have been used to study the inter-particle contacts in the past, preliminary work with these techniques indicated that they do not have the necessary resolution to distinguish between those contacts that transmit the load and those that do not, especially for systems with a wide distribution of particle sizes. In this research, computer simulations are used to study the nature and distribution of contacts in a compact with wide particle size distribution, representative of aggregate size distribution used in asphalt pavement construction. The packing fraction, the mean number of contacts and the distribution of contacts were studied for different scenarios. A methodology to distinguish and compute the fraction of load-bearing particles and the fraction of space-filling particles (particles that do not transmit any force) is needed for further investigation.

Keywords: Computer simulation, three-dimensional particlepacking, coordination number, asphalt concrete, aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139