
 

 

 
Abstract—Quantification of cardiac function is performed by 

calculating blood volume and ejection fraction in routine clinical 
practice. However, these works have been performed by manual 
contouring, which requires computational costs and varies on the 
observer. In this paper, an automatic left ventricle segmentation 
algorithm on cardiac magnetic resonance images (MRI) is presented. 
Using knowledge on cardiac MRI, a K-mean clustering technique is 
applied to segment blood region on a coil-sensitivity corrected image. 
Then, a graph searching technique is used to correct segmentation 
errors from coil distortion and noises. Finally, blood volume and 
ejection fraction are calculated. Using cardiac MRI from 15 subjects, 
the presented algorithm is tested and compared with manual 
contouring by experts to show outstanding performance. 
 

Keywords—Cardiac MRI, Graph searching, Left ventricle 
segmentation, K-means clustering. 

I. INTRODUCTION 

ARDIAC disease is the leading cause of death in the world. 
To diagnose cardiac diseases, analyzing and monitoring 

cardiac function are important in routine clinical practice by 
calculating blood volume and ejection fraction in diastolic and 
systolic phases. Magnetic resonance imaging (MRI), computed 
tomography, ultrasound, and X-ray are used to quantify cardiac 
function. Since MRI does not expose patients to ionizing 
radiation, it is suitable for routine cardiac checkups. 

To segment blood region in diastolic and systolic phases, 
manual contouring has been performed in clinical practice, 
which has been considered the gold-standard for blood volume 
and ejection fraction quantification. However, it is a 
labor-intensive and time consuming process and dependent on 
inter- and intra-observer variability because of the complex 
cardiac structure such as papillary and trabeculae muscles. 

To overcome these difficulties, a computer algorithm 
segmenting blood region of left ventricle (LV) minimizing 
human interaction is required. In this paper, an automatic LV 
segmentation algorithm is presented which uses K-means 
clustering and graph searching on cardiac MRI. Since the shape 
of LV is circular, a circular map is generated by polar mapping 
from a coil-sensitivity corrected image. K-means clustering is 
applied to segment blood region on the circular map. 
Segmentation errors are corrected by a graph searching scheme. 
Using cardiac MRI from 15 subjects, the presented algorithm is 
tested and compared with manual contouring by experts. 

This paper is composed of as follows. Section II shortly 
reviews LV segmentation researches. An automatic LV 
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segmentation algorithm is presented in Section III. 
Experimental results are shown in Section IV and Section V 
concludes. 

II. RELATED WORKS 

Many cardiac LV segmentation methods have been studied 
to calculate blood volume and ejection. These methods are 
categorized as follows: traditional segmentation algorithm, 
graph-based algorithm, active contour model algorithm and 
level-set algorithm [1]. 

Traditional segmentation methods are useful to recognize 
complex LV structures such as papillary and trabeculae muscle. 
However, segmentation parameters should be determined by 
the experience of the observer and hence designing an 
automatic LV segmentation algorithm is difficult, especially, in 
basal and apical slices [2]. 

Graph-based segmentation methods generate a cost-graph by 
considering the intensity of the pixel and the intensity 
difference among adjacent pixels. Then, a minimal cost path is 
found to segment LV. However, complex LV structures such as 
papillary and trabeculae muscles cannot be easily segmented. 
Moreover, it disturbs finding the minimal cost path [3]. 

Active contour model (ACM) methods segment a region by 
minimizing the internal and external energy of the modeled 
object. These methods set the model to the boundary of the LV 
and minimize energy by repeating calculation. The low contrast 
of cardiac MRI usually causes problems in accuracy and the 
performance is unstable depending on the initialization [4]. 

Level-set algorithms are applied to segment objects in 
low-contrast and noisy images. However, level-set algorithms 
should be performed iteratively to segment objects. Hence, it 
requires high computational costs and initialization near to 
objects for the segmentation accuracy [5]. 

Each method has trade-off among accuracy, time complexity, 
and inter-or intra-observer variation. Also, they have many 
difficulties to handle complex cardiac structures. 

III. AUTOMATIC LV SEGMENTATION 

This section presents a novel automatic LV segmentation 
algorithm using K-means clustering and graph-searching on 
cardiac MRI. The presented algorithm is composed of 5 steps: 
(1) a MRI image is pre-processed and initial LV information is 
estimated such as seed points, the statistical values of blood 
region, (2) a circular map is generated by polar mapping, (3) 
LV is segmented by K-means clustering, (4) segmentation 
errors are corrected by graph searching and (5) LV is finally 
segmented by inverse polar mapping and blood volume is 
calculated. These 5 steps are explained in the following section. 

Automatic LV Segmentation with K-means Clustering 
and Graph Searching on Cardiac MRI 
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A. Preprocessing and LV Information Estimation  

Since MRI images have noisy factors which are sensitive to 
design an automatic algorithm, we apply medial filter to reduce 
noisy factors. Then, seed points and initial LV information such 
as center of gravity (CoG) and intensity statistics are calculated. 
Also, coil-sensitivity is corrected as shown in Fig. 1. 

 

 

Fig. 1 Estimating LV information with coil-sensitivity correction 

1) Seed Point Selection and Propagation 

A seed point selection and propagation scheme in [1] and [6] 
is applied. For the middle slice, a seed point is selected by 
applying circular Hough transform to the intensity difference 
image between diastolic and systolic phases. Seed points in 
other slices are propagated from this seed point as:  

 

 | |     (1) 

 
where E(p) is the energy of point P from CoGpoint PCoG in the 
previous slice. μprev and δprev are the mean and standard 
deviation of the segmented LV in previous image. Inext(p) is the 
intensity of the point P. A window size w is set at 11×11. The 
point having minimum energy is the seed point in that slice. 

2) Image Distortion Compensation 

Since the location of coils measuring the energy from the 
object distorts scanned images, it should be considered in 
designing a computer algorithm. To compensate these coil 
distortions, we detect an initial LV by region growing with tight 
constraint and correct coil-sensitivity by estimating a 3D plane 
and doing planarization in similarly to [1]. 

B. Circular Map Generation by Polar Mapping 

LV is circular. As shown in Fig. 2, to achieve computational 
efficiency, a MRI image is converted into polar coordinate by 
polar mapping as follows:  

 

, ,                     (2) 

where the center of mapping is the CoG of initial LV and the 
radius is 3 times of the initial LV size. We call the polar 
coordinated image as a circular map in which a circular 
searching problem can be solved by linear searching. 

 

 

Fig. 2 Generating circular map by polar mapping 

C.  LV Segmentation with K-means Clustering 

To segment LV, K-means clustering is applied on the 
circular map as shown in Fig. 3. Given an initial set of K means 
m1, …, mk, which is specified randomly or by some heuristic, 
K-means clustering proceeds by alternating between assigning 
and updating steps. In the assigning step, each pixel is assigned 
to cluster with the nearest mean. In the updating step, a new 
mean is calculated to be the centroid of the pixels in the cluster 
[7]. 

 

 

Fig. 3 Segmenting LV with K-mean clustering 
 
In cardiac MRI, the pixel intensity of LV is brighter than that 

of other regions because LV includes blood (hydrogen). To 
segment LV from others, we set K as 2.  

Fig. 4 depicts segmented regions. In segmented regions, the 
LV is the region including pixels whose radius is 0 on the 
circular map. Therefore, other regions except the LV are 
filtered by region labeling. However, because of complex LV 
structures or in basal slices, some segmented LV includes 
segmentation errors (see Fig. 4 (c)). 

D.  Error Correction by Graph Searching 

The segmented LV can include errors (other tissues). 
Especially, in basal slices, segmentation errors occur at all 
times. To remove these errors, we devise a correction algorithm 
using graph searching as depicted in Fig. 5. 

On the circular map, since the boundary of LV (called as 
endocardial contour) is linear, a minimal cost path from 0 to 
360 degree angle is searched on a graph.  

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:3, 2015 

293International Scholarly and Scientific Research & Innovation 9(3) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

3,
 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

87
2.

pd
f



 

 

 

Fig. 4 K-means clustering: correct cases (a, b, and d) and an error case 
(c) (left) before and (right) after filtering 

 

 

Fig. 5 Correcting segmentation errors by graph searching 
 
The graph is generated by matching a node to the pixel of the 

circular map. The cost in a node is allocated by calculating 
intensity difference IMGdiff from the segmented LV in a 
horizontal direction as follows:  

 
, , 1,         (3) 

 
To find a minimal cost path, the accumulated cost Pmap of 

each node is calculated as follows: 
 

, min
, ,

, ,

,

,      (4) 

 
The accumulated cost Pmap is the summation of the cost of the 

node itself and the accumulated minimum cost of nodes in 
previous rows (or angles). From the minimum cost node in the 
last row (360 degree), the minimum cost path is traced to the 
first row (0 degree) and that is the boundary of LV. Fig. 6 
depicts the corrected segmentation results. 

 

 

Fig. 6 Error correction by graph searching: (left) before correction and 
(right) after correction 

E. Volume Calculation by Inverse Polar Mapping 

Since segmentation is performed on polar coordinate, the LV 
is mapped to rectangular coordinate by inverse polar mapping 

, sin , cos  as shown in Fig. 7. Then, the blood 
volume of each slice is calculated using slice thickness at 
scanning. Total blood volume and ejection fraction is acquired 
by considering all slices in diastolic and systolic phases. 

 

 

Fig. 7 Calculating blood volume after inverse polar mapping 

IV. EXPERIMENTAL RESULT 

Using MRI images of 15 subjects taken by a GE SIGNA 
1.5T scanner, blood volumes in diastolic and systolic phases 
and ejection fraction are measured by the presented algorithm 
and compared with those of manual contouring. User 
intervention rate is also checked to show the performance of the 
presented algorithm. Fig. 8 depicts the boundary of the 
segmented LV with the presented algorithm. 

 

 

Fig. 8 LV segmentation results 
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A. Blood Volume and Ejection Fraction 

Manual contouring is considered as the gold-standard in 
clinical practice. We acquired manual contouring results by 
experts. Blood volumes in diastole and systole were 145.0 mL 
± 44.9 and 56.0 mL ± 26.2, respectively. Ejection fraction was 
62.7%±9.4. 

Table I summarized blood volume and ejection fraction. In 
the presented algorithm, the blood volume of LV was 146.7 mL 
± 41.7 in diastole and 56.7 mL ± 27.6 in systole. Ejection 
fraction was 63.0% ± 10.2 on average. Overall, results were 
similar to manual contouring. 

 
TABLE I 

COMPARISON OF THE PROPOSED ALGORITHM WITH MANUAL CONTOURING 

 Proposed algorithm. 
Diastole 
(error) 

146.7 mL ± 41.7 
(4.6 mL ± 3.9) 

Systole 
(error) 

56.7 mL ± 27.6 
(2.1 mL ± 2.4) 

Ejection fraction 
(error) 

63.0%±10.2 
(1.8%±1.7) 

B.  User Intervention Rate 

User intervention rate was measured to check the possibility 
of automation. For 135 images in diastolic phases of 15 subjects, 
the number of images and cases requiring user intervention to 
segment LV correctly was counted.  

Table II summarized the calculated user intervention rate of 
the presented algorithm. Overall, the presented algorithm 
minimized the user intervention rate with the accuracy of 
manual contouring. 

 
TABLE II 

USER INTERVENTION RATE 

 Proposed algorithm. 

Basal 
1/135, 0.74% 
(1/15, 6.67%) 

Others 
0/135, 0.0% 
(0/15, 0.0%) 

V. CONCLUSION 

Manual contouring for quantifying cardiac function is a 
labor-intensive and time consuming process. Many researches 
to develop a computerized algorithm have various difficulties 
because of complex cardiac structures and noisy factors. 

In this paper, a LV segmentation algorithm using K-means 
clustering and graph searching was presented, which achieved 
high accuracy and small user intervention rate. Future works is 
improving accuracy to be exactly matched to manual 
contouring. 
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